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• Representing functions and derivatives in RKHS by means of kernel
methods can improve pattern recognition in both unsupervised and
supervised learning tasks.

• Learning how to combine kernel functions that represent functions and
their derivatives in a complementary manner can boost clustering and
classification performances.

• Our MK-KM-FD and MK-SVM-FD are respectively extensions of the
multiple kernel k-means and multiple kernel SVM from vectors to func-
tions with derivatives.
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Abstract

In this paper, we propose a framework for rich representation of smooth
functional data, leveraging a multiview approach that considers functions
and their derivatives as complementary sources of information. Additionally,
motivated by the non-linear nature of functional data, we advocate for kernel
methods as a suitable modeling approach. We extend existing multiple ker-
nel learning techniques for multivariate data to handle functional data. In
particular, we introduce a general procedure for linearly combining different
kernel functions. We apply this framework to both clustering and classifi-
cation tasks, extending multiple kernel k-means and multiple kernel SVM
methods to Sobolev functions in Hq. Our experiments involve both simu-
lated and real-world data, demonstrating the effectiveness of our proposed
methods.

Keywords: Functional data analysis, Functional data clustering, Functional
data classification, Derivative functions, Multiple kernel learning.

1. Introduction

Modern technologies allow for the massive recording of observations of
diverse phenomena at fine grained resolutions in space and in time. For
example, climate and environmental changes can be measured thanks to
remote sensing instruments, machines’ health in facilities can be monitored
using sensors, human movements and physical activities can be detected with
a smartphone accelerometer sensor, among others. These measurements are
associated with timestamps and/or geographical locations and are recorded
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as discrete data. However, they actually represent discretized observations
of continuous curves or surfaces. From a data analysis standpoint, it can be
advantageous to consider the continuous nature of the phenomenon under
study rather than solely analyzing the discrete observations. In particular,
working with continuous functions allows for the leveraging of tools from
functional analysis such as differential operators. Functional Data Analysis
(FDA) is the branch of statistics and data science concerned with this topic.

One main research line in FDA has been to extend multivariate statistical
techniques and machine learning methods to functional data (FD) both for
unsupervised and supervised tasks. In this paper, we propose to investigate
the multiple kernel paradigm for clustering and classifying FD with deriva-
tives. Our motivations are as follows. Firstly, we aim to exploit the possibility
of utilizing derivative functions in order to obtain a richer representation of
FD. In that perspective, we assume that the FD belong to the Sobolev space
Hq([0, T ]). In that case, the successive derivatives up to order q exist in
the weak sense and the latter provide as many distinct sources of informa-
tion that one can leverage. Indeed, one can combine these different views to
obtain a richer geometric representation of the FD for pattern recognition
purposes. Secondly, similar to multivariate data, we argue that projecting
FD and derivatives onto Reproducing Kernel Hilbert Spaces (RKHS) can be
beneficial in the non-linear case. In that context, we advocate for multiple
kernel learning techniques. Functional data are handled by extending the
multiple kernel k-means method for clustering problems, and the multiple
kernel support vector machine (SVM) technique in classification.

The rest of the paper is organized as follows. In section 2, we recall
background materials on FDA and introduce our general framework for rep-
resenting functions with derivatives. In addition to using kernels, we also
present a general optimization procedure for learning how to balance the
information conveyed by the different derivatives. Then, in section 3, we
address the FD clustering task. After providing a brief overview of previous
works, we detail our extension of the multiple kernel k-means to deal with
FD with derivatives. This section also exposes the experiments we conducted
on artificial and real-world data. Section 4 focuses on the classification task.
It follows the same structure as section 3. In the supervised case, we propose
an extension of the multiple kernel SVM technique for FD with derivatives.
Finally, we sum up the main points of our contributions and briefly discuss
future works in section 5.
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2. Multiple kernel representation of functions with derivatives

We review past research works in FDA that utilize derivatives as alterna-
tive or complementary views of FD. Then, we present our global framework
that advocates for the application of kernel methods. Our approach also in-
cludes a general procedure for inferring the optimal weight distribution when
linearly combining the distinct views provided by the derivative functions.

2.1. Previous works on functional data analysis with derivatives

When clustering and classifying FD, one can exploit the derivative func-
tions, which encode additional discriminant information such as slopes or
curvatures. This was pointed out at least since [1] in the FDA community.
From a conceptual standpoint, semi-metrics derived from derivative functions
were particularly emphasized in [2, 3]. In the data mining community the use
of derivatives in place of the original curves was proposed first by [4]. We also
mention [5] where the authors utilized a combination of distances between
curves and distances between derivatives for time series classification.

The usefulness of derivatives for FD pattern recognition has been empiri-
cally demonstrated in several research works. Regarding FD clustering, [6, 3]
show that for spectrometric data, the 2nd derivative functions can be more
appropriate than the original functions. In the case of electrocardiograph
curves, [7] demonstrates that a composite distance measure, which simply
adds distances between the original curves and distances between the 1st
derivatives, improves the performance of the k-means algorithm. Similarly,
in [8], it is shown that the k-means algorithm can perform better with a
composite distance using up to the 2nd derivatives. Both aforementioned
papers apply uniform weights when aggregating the distance measures. In
contrast, the framework introduced in [9] highlights the use of non-uniform
weights. However, the question of estimating the weights remains open.

In the context of classification problems, several research works have pro-
moted the use of semi-metrics as well. In the context of binary classification,
the authors of [10] propose a framework based on Linear Discriminant Anal-
ysis (LDA). Other multivariate statistical methods extended to FD have also
been examined with the addition of derivative functions. For example, in
[11], the functional logistic regression and, more generally, the generalized
functional linear model is examined with derivative functions included as
functional covariates. Concerning machine learning techniques, we also men-
tion the nearest neighbors based approach introduced in [12]. Additionally,
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we cite [13], which studies, from a theoretical standpoint, supervised learning
tasks involving FD in the Sobolev space Hq([0, T ]).

To the best of our knowledge, none of the previous work in FDA has
proposed a functional representation framework that combines a multiview
perspective using successive derivatives, implicit non-linear projections of
curves and derivatives, and non-uniform weighting schemes of kernel func-
tions altogether.

2.2. Representing functions with derivatives using kernels

In this contribution, we assume that the objects under study are n real
valued functions {xi}i=1,...,n in Wq,2([0, T ]) ≜ Hq([0, T ]) with T > 0. Here,
Hq([0, T ]) (also denoted as Hq subsequently) represents the Sobolev space of
functions whose derivatives, in the weak sense, up to order q are elements of
the Hilbert space L2([0, T ]) (also denoted as L2 subsequently).

Hq([0, T ]) = {x ∈ L2([0, T ]) : Djx ∈ L2([0, T ]), ∀j = 1, . . . , q}, (1)

where D is the differential operator.
Given the sample {xi}i=1,...,n, the sets of derivative functions up to order

q are respectively denoted {D1xi}i, {D2xi}i, . . . , {Dqxi}i. These sets of
functions are interpreted as distinct views of the same objects. It is important
to note that, although we suppose that the FD are elements of Hq, we do
not restrict ourselves to the regular Sobolev metric:

⟨xi, xi′⟩Hq =

q∑
s=0

⟨Dsxi, D
sxi′⟩L2 , ∀i, i′ = 1, . . . , n,

where D0 is the identity operator.
We consider a metric for each order s = 0, 1, . . . , q, by employing (pos-

sibly) distinct kernel functions ks : L2 × L2 → R, in place of the usual L2

inner product. Therefore, for any pair (xi, xi′), we promote the use of:

ks(Dsxi, D
sxi′), ∀s = 0, . . . , q.

In this case, it should be noted that the usual notion of Sobolev space is
no longer valid. Indeed, the representations of the derivatives {Dsxi}i with
s > 0 in their respective feature spaces associated to ks do not generally
correspond to the derivatives of the representation of the functions {xi}i in
their feature space associated to k0.
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Furthermore, we advocate for non-uniform weights, supposing that some
sets of derivatives are more discriminant than other ones and should be more
emphasized. Consequently, given any pair of functions (xi, xi′), we adopt the
more general metric:

k(xi, xi′) =

q∑
s=0

wsk
s(Dsxi, D

sxi′), where ws ≥ 0,∀s = 0, . . . , q. (2)

For all s = 0, . . . , q, ws is the non-negative weight assigned to the infor-
mation conveyed by {Dsxi}i, which consists of derivatives of order s.

2.3. Learning how to linearly combine kernel matrices of derivative functions

2.3.1. w as the analytical solution of an optimization problem

We introduce a simple optimization problem that is central to our frame-
work. The material is presented from a general scope. We detail latter on, in
sections 3 and 4, how it specifically applies to our clustering and classification
models, respectively.

Suppose that we are given a non-negative vector z = (zs)s=1,...,q, where
zs is seen as the partial profit of view s. We aim to maximize the overall
profit by means of a linear combination

∑q
s=0wszs, under the constraints

ws ≥ 0,∀s = 0, . . . , q, and ∥w∥ℓr ≤ 1. The latter condition is aimed to
bound the problem.

In our FDA context, this problem represents, from a general perspective,
how the information provided by the first q derivatives is integrated. It is
carried out by maximizing

∑q
s=0wszs, where zs is the (non-negative) gain

associated to using derivative s.
Thereby, we seek to solve the following optimization problem:

max
w∈Rq+1

w⊤z s.t.

{
w ≥ 0,
∥w∥ℓr ≤ 1.

(3)

where w ≥ 0 is a shortcut for ws ≥ 0,∀s = 0, . . . , q.
The norm hyper-parameter r can be chosen in the interval [1,∞]. How-

ever, we discard the case r = 1 because it would assign all the weight to the
view with the maximum partial profit. Our hypothesis is that the deriva-
tive functions of various orders are complementary to each other and our
objective is to design an aggregation scheme rather than a selection strategy.

Problem (3) is convex and its closed-form solution is given below.
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Proposition 1. Assuming z ≥ 0 and r > 1, the solution to Problem (3) is
given by:

w∗
s =

z
1

r−1
s(∑q

s′=0 z
r

r−1

s′

) 1
r

, ∀s = 0, . . . , q. (4)

The proof is provided in appendix. However, it is worth mentioning that
similar optimization problems have been studied in the literature for the
multivariate case. We discuss these related works in the following sub-section
to highlight the difference with our context.

2.3.2. Related works in multiple kernel learning in the multivariate case

In [14], the authors introduced a multiple kernel k-means algorithm for
multivariate data. In this work as well, an optimization problem is analyt-
ically solved in order to learn how to linearly combine the different kernel
matrices. More precisely, given a vector d = (ds)s=0,...,q of non-negative cost
values, the views’ weights vector v = (vs)s=0,...,q is determined by solving:

min
v∈Rq+1

q∑
s=0

vrsds s.t.

{
v ≥ 0,∑q

s=0 vs = 1.
(5)

For r > 1, the closed-form solution of Problem (5) is given by1 [15, 14]:

v∗s =
1∑q

s′=0

(
ds
ds′

) 1
r−1

=

(
1
ds

) 1
r−1

∑q
s′=0

(
1
ds′

) 1
r−1

, ∀s = 0, . . . , q. (6)

Problem (5) and its solution (6) appear similar to Problem (3) and its
solution (4). In fact, if we assume that the quantities used in Problem (3)
and Problem (5) are related as follows, zs = (1/ds)

1/r,∀s = 0, . . . , q, then w∗
s

is exactly (v∗s)1/r. However, in [14], ds represents the within cluster variance
associated with view s, whereas in our perspective, as we shall explain in
section 3, zs represents the between cluster variance conveyed by view s.

1It is noteworthy that Problem (5) and its solution (6) were originally introduced by
Bezdek in [15, 16]. However, the problem was designed to determine the membership
values of objects to clusters in the context of the fuzzy c-means procedure.
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Between and within cluster variance measures do vary in opposite direction
but in a linear fashion. They do not satisfy the relationship zs = (1/ds)

1/r,
therefore Problems (3) and (5) provide different solutions.

In the case of multiple kernel learning with SVM for multivariate data,
our approach represents a particular instance of the framework detailed in
the works [17, 18]. As we shall see in section 4, zs is a specific evaluation of
the quadratic form associated to the kernel matrix of view s. In this case,
(4) becomes (27) which is the same formula given in [17, Corollary 3].

Despite the existence of previous related contributions, to our knowledge,
the application of Proposition 1 for aggregating the information from func-
tions and their successive derivatives in the context of FDA and multiple
kernel machines is new.

2.4. Reconstructing the functional data from discrete observations

Before delving into our clustering and classification models, let us first
revisit some basic pre-processings in FDA. In practice, one typically does
not directly observe entire curves but rather samples of their realizations at
different time points in the interval [0, T ]. Therefore, when analysing real-
world data, it is necessary to reconstruct an approximate functional form
using the finite and discrete set of values.

While the set of observation points for two distinct FD, xi and xi′ , can
be different, we suppose that all FD were measured with respect to the
same time grid {tj}j=1,...,p. Consequently, for all xi, i = 1, . . . , n, we have
p observations {yij}j=1,...,p. However, we presume that these measurements
could have been corrupted by noise. Hence, we suppose that:

yij = xi(tj) + ϵij, ∀i = 1, . . . , n,∀j = 1, . . . , p, (7)

where {ϵij}i=1,...,n,j=1...,p are assumed to be independent across i and j.
To infer approximated functional forms for {xi}i departing from {yij}i,j,

we suppose that the FD can be represented as linear combinations of a pre-
defined set of basis of functions. In this context, we consider the commonly
used B-splines basis system which consists of polynomial functions. Since we
assume that the derivatives up to the qth order are in L2, we work with the
subspace of functions spanned by the set of B-splines of order d = q + 2 to
ensure a sufficiently rich framework to represent the functional data and their
derivatives. Consequently, the basis system has a dimension of m = d + p.
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Let {ϕk}k=1,...,m be a set of m B-splines that we denote in vector form
as ϕ = (ϕk)k=1,...,m. Therefore, the approximated FD are assumed to be
elements of the subspace Span(ϕ1, . . . , ϕm) ⊂ Hq:

xi =
m∑

k=1

ci,kϕk = c⊤i ϕ, ∀i = 1, . . . , n,

where ci is the (m × 1) vector of coefficients of xi in the basis system.
It is important to underline that using a set of smooth basis functions

{ϕk}k facilitates the determination of the successive derivative functions of
{xi}i. Since the differential operator D is linear, it is sufficient to determine
the sets of derivatives of the basis functions {Dsϕk}k for s = 1, . . . , q.

For each element xi, one must estimate ci based on the observations
{yij}j=1,...,p. Due to noise corruption, this problem is typically addressed
using least squares. Additionally, to prevent overfitting and achieve better
control over the smoothness of the FD, a roughness penalty term denoted
R is applied. Assuming the need for up to the qth derivatives, one can set
R(xi) = ∥Dq+2xi∥2L2

as suggested in [19, Chapter 5].
More formally, the spline smoothing procedure that estimates ci for the

FD xi involves solving:

ĉi = arg min
c∈Rm

p∑
j=1

(yij − xi(tj))
2 + λR(xi), (8)

where xi(tj) =
∑m

k=1 ci,kϕk(tj) and λ > 0 is a tuning hyper-parameter esti-
mated by a cross-validation procedure. In this paper, we employ the gener-
alized cross-validation (GCV) criterion for this purpose.

3. Multiple kernel clustering of functions with derivatives

We begin by providing a brief overview of previous research activities in
functional data clustering. Subsequently, we introduce our approach which
focuses on FD with derivatives and where each set of derivatives is considered
a distinct view of the same objects. Utilizing kernel functions enables us to
address non-linearity. Specifically, we extend the multiple kernel k-means
technique to functions with derivatives. In that perspective, we explain how
Proposition 1, as discussed in sub-section 2.3, is applied to automatically
update the views’ weights during the partitioning process. To demonstrate
the efficacy of our clustering framework, we present experimental results from
both simulated and real-world datasets.
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3.1. Previous works on functional data clustering

Data clustering aims to automatically group a set of n items into subsets
called clusters, forming a partition. The goal is to ensure that members
within the same cluster are more similar to each other than to elements in
other clusters. Assume that we have k clusters then the partition is denoted
C = {C1, . . . , Ck}. Many multivariate clustering methods have been adapted
or extended in order to address FD. Reviews of these approaches can be found
in [20, 21].

In this contribution, we focus on the functional k-means algorithm. Pi-
oneering works in this area include [22] and [23]. In the former, FD are
projected onto a set of B-splines similar to (8) while the latter focuses on
Gaussian random functions. In [24], a re-assignment procedure similar to
k-means was conducted, where each xi is compared to its projection on the
truncated Karhunen-Loève expansion of each cluster. Theoretical analysis
of the k-means problem in Hilbert spaces is presented in [25]. Additionally,
in [26], the k-means algorithm is carried out with the FD being represented
utilizing a set of basis functions of an RKHS with a kernel function defined
on [0, T ] × [0, T ]. Another related paper is [27], where the k-means parti-
tions the curves while a weight function defined on [0, T ] is learned to select
sub-intervals that favor the variance.

All those research works apply the basic steps of the k-means algorithm,
with the main differences lying in the representation used for FD. Our contri-
bution diverges from these previous approaches by integrating the derivative
functions in the FD representation. Furthermore, we operate under the as-
sumption that FD and their derivatives may belong to non-linear subspaces.
This is related to the manifold hypothesis: even if data are described in high
dimensional linear spaces, in practice, it is often the case that they belong
to non-linear manifolds with lower dimensions. Similar to multivariate data,
we hypothesize that employing kernel functions2 to implicitly project the FD
on another space can be advantageous. In addition, introducing non-uniform
weights to optimally blend the information coming from the derivative func-
tions of different orders represents an innovative aspect of our work.

2Note that unlike the aforementioned paper [26], we use kernel functions defined on
L2([0, T ])× L2([0, T ]) and not on [0, T ]× [0, T ].
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3.2. The multiple kernel k-means for FD with derivatives

We propose to extend the multiple kernel k-means algorithm from the
multivariate case to functions in Hq, where each of the derivatives of order
s = 0, . . . , q is considered as a distinct view. More formally, the optimization
problem that we are interested in is:

min
C,w

1

n

k∑
l=1

1

2|Cl|
∑

i:xi∈Cl

∑
i′:xi′∈Cl

q∑
s=0

ws∥ψs(Dsxi) − ψs(Dsxi′)∥2Fs (9)

s.t.


C = {C1, . . . , Ck} is a partition,
w ≥ 0,
∥w∥ℓr ≤ 1,

where Fs are the RKHS associated to ks onto which the functions {Dsxi}i
are projected by means of the mappings ψs : L2 → Fs.

The loss function is the within cluster variance, which is a weighted mean
of the within variance of each cluster Cl with l = 1, . . . , k. In order to
establish a graph-based formulation relying on kernel functions, we express
the within variance in a pairwise manner. Moreover, we explicitly state
that the objective function is separable with respect to the different views
s = 0, . . . , q.

By decomposing the total variance into the sum of the within and between
cluster variances, we can alternatively maximize the between cluster variance.
As a consequence, the previous problem is equivalent to the following one:

max
C,w

1

2n2

n∑
i=1

n∑
i′=1

q∑
s=0

ws∥ψs(Dsxi) − ψs(Dsxi′)∥2Fs (10)

− 1

n

k∑
l=1

1

2|Cl|
∑

i:xi∈Cl

∑
i′:xi′∈Cl

q∑
s=0

ws∥ψs(Dsxi) − ψs(Dsxi′)∥2Fs

s.t.


C = {C1, . . . , Ck} is a partition,
w ≥ 0,
∥w∥ℓr ≤ 1.

Next, for all pairs {(xi, xi′)}i,i′=1,...,n and all views s = 0, . . . , q, let us
denote ⟨ψs(Dsx), ψs(Dsx′)⟩Fs by ks(Dsxi, D

sxi′), and gather all these values
in the kernel matrices Ks = (Ks

ii′)i,i′=1,...,n = (ks(Dsxi, D
sxi′))i,i′ . Then, if
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we expand the squared distances in Problem (10), it is not difficult to show
that we obtain the following equivalent formulation:

max
C,w

q∑
s=0

ws

 k∑
l=1

1

n|Cl|
∑

i:xi∈Cl

∑
i′:xi′∈Cl

Ks
ii′ −

1

n2

n∑
i=1

n∑
i′=1

Ks
ii′

 (11)

s.t.


C = {C1, . . . , Ck} is a partition,
w ≥ 0,
∥w∥ℓr ≤ 1.

We employ the standard strategy for solving such kinds of multiple kernel
learning problems, which involves alternating between (i) maximizing with
respect to C while keeping w fixed and (ii) maximizing with respect to w
while keeping C fixed. In the former case, a usual kernel k-means algorithm
is utilized to determine C. In the latter case, it is possible to reach a closed-
form solution following the materials we exposed in sub-section 2.3. In that
perspective, we introduce the following quantities:

zs =
k∑

l=1

1

n|Cl|
∑

i:xi∈Cl

∑
i′:xi′∈Cl

Ks
ii′ −

1

n2

n∑
i=1

n∑
i′=1

Ks
ii′ , ∀s = 0, . . . , q. (12)

Note that zs ≥ 0, ∀s = 0, . . . , q, since it corresponds to between cluster
variance measures. Then, owing to Proposition 1, we have the following
result.

Corollary 1. Let C = {C1, . . . , Ck} be fixed and r > 1, then the following
optimization problem:

max
w

q∑
s=0

ws

 k∑
l=1

1

n|Cl|
∑

i:xi∈Cl

∑
i′:xi′∈Cl

Ks
ii′ −

1

n2

n∑
i=1

n∑
i′=1

Ks
ii′

 (13)

s.t.

{
w ≥ 0,
∥w∥ℓr ≤ 1,

is convex and the optimal solution is given by, ∀s = 0, . . . , q:

w∗
s =

(∑k
l=1

1
n|Cl|

∑
i:xi∈Cl

∑
i′:xi′∈Cl

Ks
ii′ − 1

n2

∑n
i=1

∑n
i′=1 K

s
ii′

) 1
r−1

(∑q
s′=0

(∑k
l=1

1
n|Cl|

∑
i:xi∈Cl

∑
i′:xi′∈Cl

Ks′
ii′ − 1

n2

∑n
i=1

∑n
i′=1K

s′
ii′

) r
r−1

) 1
r

.

(14)
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It is worth mentioning that the range of each kernel values ks for s =
0, . . . , q, can strongly vary. Accordingly, before combining the different ker-
nel matrices {Ks}s=1,...,q, it may be important to carry out a normalization
procedure to make them more comparable to each other.

We denote our method as MK-KM-FD, representing multiple kernel k-
means for functions with derivatives. The procedure is summarized in Algo-
rithm 1.

Algorithm 1: Multiple kernel k-means for functions with deriva-
tives (MK-KM-FD).

Input: {yij}i=1,...,n;j=1,...,p (sampled values of FD), q ≥ 0 (maximum
order of derivative), r > 1 (ℓr norm, default 2), {ks}s=0,...,q

(kernel functions, default Gaussian), σ (kernel
hyper-parameter if any, default 1), k ≥ 2 (number of
clusters)

Output: C (partition of FD), w (weight vector of size q + 1)
1 Project the sampled FD onto a pre-defined set of q + 2 + p B-splines

of order q + 2 and determine {xi}i=1,...,n by solving (8);
2 Determine {Dsxi}i=1,...,n,∀s = 1, . . . , q;
3 Determine {Ks = (ks(Dsxi, D

sxi′))i,i′=1,...,n}, ∀s = 0, . . . , q;
4 Normalize the kernel matrices Ks,∀s = 0, . . . , q (optional);
5 Initialize a uniform weight vector w;
6 while Stopping condition not reached do
7 Fix w and apply the kernel k-means algorithm with multiple

kernel K =
∑q

s=0wsK
s to determine a new C (if applicable, use

the previous C as for initialization);
8 Fix C and apply Corollary 1 to determine a new w;

9 end

Since the alternating procedure described in Algorithm 1 improves the
objective function of Problem (11) at each iteration, then it converges to a
local optimum.

3.3. Experiments with the MK-KM-FD model for functions with derivatives

3.3.1. Experiments settings

The research questions we investigate regarding the FD clustering task
are as follows:
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• Is it beneficial to combine functions with their derivatives by using a
multiview approach ?

• Can we improve FD pattern recognition by projecting functions and
derivatives in RKHS using non-linear kernel functions ?

• Does weights optimization allow for any improvement ?

We address these questions using the MK-KM-FD method described in
Algorithm 1. We examined the cases q = 1 and q = 2, meaning that we take
into account up to the 2nd derivatives. Regarding the constraint on w’s ℓr
norm, we set r = 2 in all our tests. The stopping condition in Algorithm 1
is triggered if a precision of 10−5 is reached for the objective function, or if a
maximum of 10 iterations is achieved.

In order to study the different sets of derivatives either as single views
or in a multiview framework, we tested MK-KM-FD using the following FD
representations which rely only on linear kernel functions:

• l0: Kl0 = (⟨xi, xi′⟩L2)i,i′=1,...,n,

• l1: Kl1 = (⟨Dxi, Dxi′⟩L2)i,i′=1,...,n,

• l2: Kl2 = (⟨D2xi, D
2xi′⟩L2)i,i′=1,...,n,

• l01: Kl01 = Kl0 + Kl1,

• l012: Kl012 = Kl0 + Kl1 + Kl2.

Note that Kl01 and Kl012 are equivalent to the regular Sobolev metric in
H1 and H2, given in (2.2). For all previously exposed linear kernel matrices
there is no weights optimization. This amounts to applying MK-KM-FD
procedure without carrying out step 8 in Algorithm 1.

In contrast, the following kernel matrices result from a non-uniform linear
combination of the distinct views:

• l01o: Kl01o = w0K
l0 + w1K

l1,

• l012o: Kl012o = w0K
l0 + w1K

l1 + w2K
l2.

The weights are optimized at each iteration of Algorithm 1 using Corollary
1. In these cases, the full potential of our framework is exploited.
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The acronyms from l0 to l012o, assigned to the previous kernel matrices,
indicate the type of base kernel function (where l stands for linear), the sets
of derivatives involved in the combination (the digits denote the order of
derivation taken into account) and whether the weights are updated at each
iteration of not (where o stands for optimized weights).

To investigate the manifold hypothesis, we also utilized FD representa-
tions based on the Gaussian kernel in place of the linear kernel in all afore-
mentioned cases. Therefore, for all possible single views s = 0, 1, 2 and all
pairs of curves (Dsxi, D

sxi′) in the sample, we considered:

Kgs
ii′ = exp

(
−
∥Dsxi −Dsxi′∥2L2

(σs)2

)
, ∀s = 0, 1, 2, (15)

where σs > 0, is the hyper-parameter controlling the neighborhood width.
Consequently, the other batch of kernel matrices we experimented with is

composed of: Kg0, Kg1, Kg2 as single views; Kg01, Kg012, as multiple views;
and Kg01o, Kg012o as multiple views with weights optimization.

The clustering performances are assessed from an external validation per-
spective where we compare the partition C obtained by our clustering method
against the ground-truth partition denoted by L. We use the normalized mu-
tual information3 (NMI) measure to assess the effectiveness associated with
different representations of functions with derivatives. Let L = {L1, . . . , Lk}
and C = {C1, . . . , Ck} denote the true classes and the found clusters respec-
tively. Then, the NMI assessment measure is defined by:

NMI(C,L) =
2MI(C,L)

H(C) + L(C)
(16)

where H(C) is the entropy of C given by H(C) = −
∑k

l=1(|Cl|/n) log((|Cl|/n)),
and MI(C,L) is the mutual information between C and L expressed by
MI(C,L) =

∑k
l,m=1(|Cl ∩ Lm|/n) log(n|Cl ∩ Lm|/(|Cl||Lm|)).

The NMI scores are in [0, 1], where a higher value indicates a closer align-
ment between the two partitions and a better clustering solution.

MK-KM-FD relies on the kernel k-means heuristic. As this algorithm’s
random initialization often leads to different local optima, we ran MK-KM-
FD multiple times with varying initializations to address this variability. To

3Note that we also employed the Purity measure as another evaluation criterion. We
generally obtained similar conclusions as with NMI. As a result, we only expose the NMI
measures in order to lighten the presentation of the experimental results.
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ensure a robust assessment of differences between results obtained from two
different FD representations, we applied paired t-tests with a significance
level of 5% to compare the mean values of the obtained NMI measures.

3.3.2. Experiments with simulated data

In our first batch of experiments, we simulated univariate Gaussian den-
sity functions on the domain [−4, 4]. We considered two ground-truth clusters
named group 1 and group 2, which are associated to two distinct sets of pa-
rameters (µ1, σ1) = (0, 1) and (µ2, σ2) = (0, 2) respectively. Furthermore, we
introduced random noises for each parameter: ϵµ1 , ϵµ2 ∼ N (0, 0.15), ϵσ1 ∼
N (1, 0.1) and ϵσ2 ∼ N (1.2, 0.1). Additionally, an extra source of variability
for group 2 was injected by considering a random offset: ϵa ∼ N (0.005, 0.01).
Thereby, the first group of Gaussian curves is sampled as follows:

x(t) = N (t;µ1 + ϵµ1 , σ1 + ϵσ1) (17)

=
1

(σ1 + ϵσ1)
√

2π
exp

(
−1

2

(t− (µ1 + ϵµ1))
2

(σ1 + ϵσ1)
2

)
,

while the generative procedure for the Gaussian functions of group 2 is:

x(t) = N (t;µ2 + ϵµ2 , σ2 + ϵσ2) + ϵa (18)

=
1

(σ2 + ϵσ2)
√

2π
exp

(
−1

2

(t− (µ2 + ϵµ2))
2

(σ2 + ϵσ2)
2

)
+ ϵa

Given the Gaussian density function N (t;µ, σ), its 1st and 2nd derivative
functions have two and three stationary points which are {µ− σ, µ+ σ} and
{µ−

√
3σ, 0, µ+

√
3σ}, respectively. In our perspective, this suggests that the

derivatives provide views that can exhibit additional discriminative features
for pattern recognition purposes. A sample of 500 curves for each group and
respective mean vectors are provided in Figure 1. From this illustration,
note that larger distances between mean curves of group 1 and group 2 are
observed around the stationary points.

For simulated data, as it is possible to analytically determine derivative
functions and obtain a fine grained representation of the curves, there is no
need to apply the spline smoothing procedure. Therefore, for all curves and
derivatives, we computed their exact values on a grid from -4 to 4 with a 0.025
step length. Consequently, in this case, step 1 in Algorithm 1 is skipped.

We conducted preliminary tests with values in {0.1, 1, 10} for the hyper-
parameter σs in the Gaussian kernel (15) and found that setting σs = 1
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Figure 1: From left to right: original functions, 1st derivatives and 2nd derivatives. Func-
tions from group 1 are in gray and solid lines, functions from group 2 are in blue and
dashed lines. Mean functions are in red: thick solid lines correspond to group 1 whereas
thick dashed lines represent group 2.

for all s = 0, 1, 2 yielded satisfactory results. Therefore, we used this value
consistently across all experiments with artificial datasets. Moreover, since
our focus is on comparing Gaussian kernel based representations with differ-
ent sets of derivative functions, further tuning of this hyper-parameter was
deemed unnecessary.

Tests with one sample of synthetic data. In the first set of experiments, we
utilized the set of 1000 random curves represented in Figure 1. The clustering
scores we obtained using linear and Gaussian kernels are illustrated in Figure
4. The box plots represent the variability of the NMI measures due to the
kernel k-means initialization using 50 different random partitions.

In order to assess the different representations of functions with deriva-
tives, we compared the NMI mean values (shown by red triangles in Figures).
We used paired t-test with a significance level of 5% to determine whether the
differences were statistically significant. To facilitate the readability of our
conclusions, we use the following symbols ∼, ≳, > and ≫ for “similar to”,
“slightly better4 than”, “better5 than”, and “much better6 than”, respec-
tively. It is important to note that ∼ indicates that the two representations
are not statistically distinct.

4If the difference in absolute value is less than or equal than 5 points.
5If the difference in absolute value is between 5 and 10 points.
6If the difference in absolute value is greater than 10 points.

16



l0 l1 l2 l01 l012

0.
0

0.
1

0.
2

0.
3

0.
4

NMI

g0 g1 g2 g01 g012

0.
0

0.
1

0.
2

0.
3

0.
4

NMI

Figure 2: Box plots of NMI measures of MK-KM-FD using 50 random initializations for
the kernel k-means procedure. Each box plot corresponds to a kernel representation with
acronym given in x-axis (no weights optimization is applied). From left to right: linear
kernel based representations then Gaussian kernel based representations. The red triangles
indicate the mean values.

Regarding the linear representations based on the linear kernels, the graph
on the left side of Figure 4 can be summarized as follows:

• l0 ∼ l1 ∼ l2.

• l01 ≳ l1 and l01 ≳ l2.

• l012 ≳ l1 and l012 ≳ l2.

• l01 ∼ l012.

In the case of linear kernels, the different single views were comparable to each
other but uniformly adding derivatives of different orders slightly improved
the results.

In regard to FD representations using Gaussian kernels as a base simi-
larity measure, the outcomes depicted in the graph on the right hand side of
Figure 4 are different:

• g1 ≳ g0 and g2 ≳ g0.

• g2 ≳ g1.
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• g2 ∼ g01 ∼ g012.

Here, the derivatives yielded slightly better NMI values compared to the orig-
inal curves. In particular, 2nd derivatives provided the best performances.
However, aggregating all information in a uniform multiview achieved com-
parable scores.

Next, we compare l01, l012, with g01, g012, which are the best FD rep-
resentations we obtained so far with linear and Gaussian kernels. The NMI
mean values7 for these four approaches are 0.3448, 0.3453, 0.3572 and 0.3676,
respectively. These measures suggest that Gaussian kernels outperform lin-
ear kernels, but only the following relations are found to be statistically
significant:

• g012 ≳ l01 and g012 ≳ l012.

Here, we can conclude that both (i) integrating derivatives as comple-
mentary views of curves and (ii) employing non-linear kernels, can improve
unsupervised pattern recognition.

Then, we studied the weights optimization procedure given in step 8 of
Algorithm 1. We experimented with the same data and setting as before.
Figure8 3 presents the comparison of previous multiview representations l01t,
l012t, g01t and g012t, without (t = ∅) and with weights optimization (t = o).

Weights optimization did not provide improvements in the case of FD
representations using linear kernels:

• l01 ≳ l01o.

• l012 ≳ l012o.

In contrast, for Gaussien kernels, the NMI mean scores are higher when
the views’ weights are optimized. However, no statistical difference is achieved
between g01 and g01o, or between g012 and g012o:

7As for illustration, the Purity measures for these four approaches are 0.8180, 0.8059,
0.8274 and 0.8392, respectively. In the case of g012, it means that, on average, 83.92% of
the members of a found cluster are from a same group.

8For readability reasons, in Figure 3, we represented the NMI values that are in
[0.32, 0.385] only. Consequently, 3 low measures (below 0.32) from g01 and g012 are
not represented.
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Figure 3: Box plots of NMI measures of MK-KM-FD using 50 random initializations for
the kernel k-means procedure. Each box plot corresponds to a kernel representation with
acronym given in x-axis. The acronym suffix o indicates weights optimization. From left
to right: linear kernel based representations then Gaussian kernel based representations.
The red triangles indicate the mean values.

• g01 ∼ g01o.

• g012 ∼ g012o.

Nonetheless, it is interesting to observe that, in these experiments, opti-
mizing the weights helps reduce the variability of the clustering performances
with respect to the random initialization of the kernel k-means. Indeed, in
Figure 3, box plots of representations using weights optimizations are tighter
compared to their respective counterparts.

Tests with 50 samples of synthetic data. In order to have a more global
assessment of the MK-KM-FD approach, we generated 50 samples of the
same kind of datasets as previously (500 curves per group). Our objective was
to have a more robust evaluation of the impact of the weights optimization
procedure. We applied the same setting as before, except for the number of
random initializations of the kernel k-means which was reduced to 10. For
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each FD representation and each sample, we averaged the NMI measures
over these 10 trials. The box plots of the distributions of NMI mean values
with respect to the 50 samples are shown in Figure 4.

l0 l0
1

l0
1o

l0
12

l0
12

o g0 g0
1

g0
1o

g0
12

g0
12

o
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0.40

NMI

Figure 4: Box plots of NMI measures of MK-KM-FD using 50 samples of 1000 curves (half
of group 1, half of group 2). Each box plot corresponds to a kernel representation with
acronym given in x-axis. The acronym suffix o indicates weights optimization. From left
to right: linear kernel based representations then Gaussian kernel based representations.
The red triangles indicate the mean values.

These experiments confirm that Gaussian kernels generally yield better
scores than linear kernels. Then, for each pair of representations based on
Gaussian kernels, we statistically tested the difference in the distributions of
the NMI mean values, using again a paired t-test with a significance level of
5%. The results were as follows:

• g01o ≳ g01.

• g012o ≳ g012.

• g01o ∼ g012o.
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Unlike the previous sample, these larger experiments demonstrate that, in
the case of Gaussian kernels, weights optimization significantly enhance the
clustering results, giving the best overall NMI scores.

In summary, these experimental outcomes clearly exemplify the potential
benefits of our FD clustering technique MK-KM-FD, which promotes the use
of derivative functions with non-linear kernel methods and a multiple views
aggregation based on linear combination with optimized weights.

3.3.3. Experiments with real-world data

In addition to synthetic data, we examined 6 real-world datasets, the
characteristics of which are exhibited in Table 1. All datasets are publicly
available from either the fda R package [28], the fda.usc R package [29] or the
UEA and UCR TS Classification Repository [30]. Here is a brief description
of each dataset:

• Growth: it contains measurements of the heights of 39 boys and 54 girls
from age 1 to 18. The measurements are taken at regular intervals. The
task consists in separating boys and girls growth curves.

• Trace: it is a synthetic dataset designed to simulate instrumentation
failures in a nuclear power plant. There are 4 different transient classes
corresponding to distinct curve shapes.

• poblenou: it corresponds to NOx levels measured every hour by a con-
trol station in Poblenou in Barcelona (Spain). The goal is to discrimi-
nate air pollution trajectories during working days from the ones during
non-working days.

• Meat : it concerns food spectrographs used in chemometrics to clas-
sify food types. The data are obtained using Fourier transform in-
frared (FTIR) spectroscopy with attenuated total reflectance (ATR)
sampling. There are 3 classes: chicken, pork and turkey.

• phoneme: it contains 250 speech frames with class membership: “sh”,
“iy”, “dcl”, “aa” and “ao”. From each speech frame, a log-periodogram
of length 150 has been stored. The goal is to predict the class mem-
bership.

• SwedishLeaf : it is a set of swedish tree leaf outlines where contour
images are transformed into time series. There are 15 different species.

21



We used the 500 observations of the test subset provided in the dataset
repository.

Source Type Name Nb of Nb of Nb of
FD Class time pts

fda Growth curve Growth 93 2 31
UCR TS Sensor Trace 100 4 275
fda.usc Air pollution poblenou 115 2 24

UCR TS Spectroscopy Meat 120 3 448
fda.usc Acoustic phoneme 250 5 150

UCR TS Image SwedishLeaf 500 15 128

Table 1: List of real-world datasets used in our experiments.

Unlike simulated data, pre-processings are necessary to recover an approx-
imated functional form from the available discrete observations. Following
the procedure outlined in sub-section 2.4, we carried out the spline smooth-
ing approach given by (8) with a roughness penalty R(x) = ∥D4x∥2L2

for all
6 datasets. This pre-processing corresponds to step 1 of Algorithm 1.

We exclusively tested the Gaussien kernel based representations. For
determining the neighborhood bandwidth σs, ∀s = 0, 1, 2, we employed a
strategy inspired by [31] for auto-tuning this hyper-parameter. In their study,
the authors proposed a local scaling approach where, for each pair (xi, xi′),
(σs)2 in (15) was replaced with σs

iσ
s
i′ , where σs

i represents the distance from
Dsxi to its 7th nearest neighbor. While this method proved effective, it may
yield an affinity matrix that is not positive semi-definite. To circumvent this
issue, we determined the empirical distribution of the distances to the 7th
nearest neighbors for each dataset, and set the global σs value to the median
estimate.

Similar to the simulated data experiments, we conducted 10 runs of MK-
KM-FD 10 times with distinct random initializations. Figure 5 illustrates the
distributions of the NMI scores for all 6 datasets considering representations
g0, g1, g2, g01, g01o, g012, and g012o.

We begin with a summary of the performances provided by the single
views g0, g1 and g2. Below are ranked lists of representations organized
in descending order of the NMI mean values (depicted as red triangles in
Figure 5). Then, for two subsequent representations, we indicate a preference
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Figure 5: Box plots of NMI measures of MK-KM-FD using 10 random initializations for
the kernel k-means procedure. Each box plot corresponds to a Gaussian kernel based
representation with acronym given in x-axis. The acronym suffix o indicates weights
optimization. Each graphic corresponds to the results of a real-world dataset whose name
is specified on top of the frame. The red triangles indicate the mean values.

relation (≳ of > or ≫) only if it is statistically significant9 otherwise we use
∼:

• Growth: g1 ∼ g0 ≫ g2.

• Trace: g1 > g2 ≫ g0.

• poblenou: g2 ∼ g1 ≫ g0.

• Meat : g0 ∼ g1 ≫ g2.

• phoneme: g0 ≫ g1 ≳ g2.

9Note that the relation “significantly different” provided by the paired t-test is not
transitive.
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• SwedishLeaf : g1 ∼ g0 ≫ g2.

While derivatives can outperform the original functions, it is generally uncer-
tain in advance which order of derivation to prioritize. Hence, it is pertinent
to explore the multiview approach and enhance the comparisons above by
incorporating g01 and g012. When contrasting the most effective and least
effective single views with the multiview models, we find:

• Growth: g012 ∼ g01 ≫ g1 ≫ g2.

• Trace: g1 ≫ g012 ∼ g01 ≫ g0.

• poblenou: g2 ∼ g012 ∼ g01 > g0.

• Meat : g01 ∼ g012 > g0 ≫ g2.

• phoneme: g0 ≫ g01 ≫ g012 ≫ g2.

• SwedishLeaf : g1 ∼ g01 ∼ g012 ≫ g2.

We highlight that multiview representations offer risk-averse strategies. While
they may not always deliver the best clustering performance, they consis-
tently avoid the worst case scenario.

Next, we complete our analysis by investigating whether optimizing the
views’ weights enhances clustering performance:

• Growth: g012o ∼ g012 ∼ g01 ∼ g01o.

• Trace: g012o ≳ g012 ∼ g01o ∼ g01.

• poblenou: g012o ∼ g012 ∼ g01o ∼ g01.

• Meat : g012o ∼ g01 ∼ g01o ∼ g012.

• phoneme: g01o≫ g01 > g012o > g012.

• SwedishLeaf : g01o ∼ g012o ∼ g01 ∼ g012.

In the vast majority of cases, optimizing the views’ weights provided better
outcomes. Furthermore, similar to the experiments with synthetic data, we
observed from Figure 5 that the dispersion of the NMI values was tighter
when weights are optimized, suggesting that MK-KM-FD is less dependant
on the random initialization of the kernel k-means procedure.
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In summary, we argue that, without any external knowledge on the FD,
using Gaussian kernel functions, setting q = 2 and conducting weights opti-
mization could be advantageous. This configuration makes it possible to (i)
mitigate the risks associated with uncertainty regarding the choice of views
and the manifold hypothesis, and (ii) potentially achieving superior cluster-
ing performances.

4. Multiple kernel classification of functions with derivatives

Henceforth, we shift our focus to the classification task. As in section
3, we begin with a short review of related works in the scope of FD clas-
sification. Then, we delve into the details of our technique which relies on
multiple kernel SVM. Once again, each set of derivative functions {Dsxi}i
with s = 0, . . . , q, is seen as a distinct view of the objects under study.
Leveraging kernel functions enables us to adopt a more versatile representa-
tion framework capable of handling non-linear manifolds. Proposition 1 is
also employed in this supervised setting to provide a principled approach for
updating the weights of the different views. Our experiments use the same
synthetic and real data as in the preceding section.

4.1. Previous works on functional data classification

From a broad perspective, let X be the data space, C be the discrete and
finite label set, ci ∈ C represent the class of xi ∈ X, and {(xi, ci)}i=1,...,n

be the training set. In the classification task, the goal is to learn from
{(xi, ci)}i=1,...,n, a mapping f : X → C that accurately predicts c ∈ C for
any given x ∈ X.

There are numerous classification techniques available. In this paper,
we focus on parametric models where the induction phase involves select-
ing an appropriate instance from a class of functions by minimizing a loss
function. In this context, several classic multivariate methods have been ex-
tended to FD including Linear Discriminant Analysis (LDA) [32], Quadratic
Discriminant Analysis (QDA) [33, 34], logistic regression and more globally,
generalized linear models [35, 36].

Predictive methods from the machine learning community have also in-
spired researchers and practitioners working with FD. For instance, func-
tional random forest approaches were introduced in studies such as [37] and
[38]. Neural networks and ensemble methods are other machine learning
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techniques that have been explored as seen in [39, 40, 41] and [42, 12] respec-
tively.

In this paper, we are interested in kernel methods. Firstly, we mention
[43], which proposes projecting FD into a RKHS for binary classification
problems using a penalized logistic regression as a prediction model. Another
relevant work is [44], which extends Support Vector Machines (SVM) to
FD. The authors highlight transformations suitable for dealing with FD and
deriving meaningful kernels. Moreover, [44] establishes the consistency of the
functional SVM algorithm following the reasoning introduced in [45].

The SVM method for FD mentioned above serves as the foundation of our
classification model for FD with derivatives. Our contribution can be viewed
as an extension of [44], where we explicitly consider functions in Hq instead
of L2, and we apply the multiple kernel learning framework to combine the
kernel matrices associated with distinct sets of derivatives. Further details
are provided in the following sub-section.

4.2. The multiple kernel SVM model for FD with derivatives

To begin with, let us recall the functional SVM model introduced in [44]
in a more formal manner. In this latter paper, the FD {xi}i are considered
elements of L2([0, T ]). Given a training set {(xi, ci)}i=1,...,n, the SVM ap-
proach for FD consists in solving the following convex optimization problem
(primal):

min
a0∈R,a∈L2

1

2
∥a∥2L2 + µ

n∑
i=1

ξi (19)

s.t.

{
ci (a0 + ⟨a, xi⟩L2) ≥ 1 − ξi,∀i = 1, . . . , n;
ξi ≥ 0,∀i = 1, . . . , n,

where µ ≥ 0 is a hyper-parameter regulating the balance between the soft-
margin which is inversely proportional to ∥a∥2L2 , and the soft-error

∑n
i=1 ξi.

The previous constrained optimization problem is equivalent to the fol-
lowing unconstrained problem:

min
a0∈R,a∈L2

1

2
∥a∥2L2 + µ

n∑
i=1

max (0, 1 − ci (a0 + ⟨a, xi⟩L2)) (20)
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The SVM methodology has a notable characteristic, namely its dual for-
mulation, which is expressed as follows:

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i=1

n∑
i′=1

αiαi′cici′⟨xi, xi′⟩L2 (21)

s.t.

{ ∑n
i=1 αici = 0;

0 ≤ αi ≤ µ,∀i = 1, . . . , n.

The duality transforms the primal problem, whose solution is in the func-
tion space L2, into a dual problem with a finite dimensional search space Rn.
Furthermore, the dual problem solely depends on the inner products between
pairs of objects in the training sample. This property makes it possible to im-
plicitly project the FD into a RKHS using the kernel trick. Let K be a square
matrix of order n with general term Kii′ = ⟨ψ(xi), ψ(xi′)⟩F = k(xi, xi′), where
F is a RKHS with reproducing kernel function k, and ψ its associated feature
mapping. Then, the SVM approach in its dual expression can be formulated
as follows:

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i=1

n∑
i′=1

αiαi′cici′Kii′ (22)

s.t.

{ ∑n
i=1 αici = 0;

0 ≤ αi ≤ µ,∀i = 1, . . . , n.

We extend the previous SVM model for functions in L2 to incorporate
the multiple kernel SVM approach applied to functions in the Sobolev space
Hq. Following our general framework described in section 2.2, we propose to
employ a multiple kernel matrix:

K =

q∑
s=0

wsK
s, (23)

where ws ≥ 0,∀s = 0, . . . , q, and for all couples (xi, xi′) in the training set,
Ks

ii′ = ⟨ψs(Dsxi), ψ
s(Dsxi′)⟩Fs = ks(Dsxi, D

sxi′) similar to the materials
exposed in sub-section 3.2.

As in the unsupervised case, we leverage the fact that the derivative
functions offer various perspectives of the original objects and employ the
multiple kernel learning paradigm to merge these distinct sources of infor-
mation. Moreover, we project each set {Dsxi}i for all s = 0, . . . , q, from L2
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to an RKHS using the mapping functions ψs. This aspect becomes crucial
when classes are not linearly separable.

In the supervised case as well, we suppose that the kernel matrices {Ks}s
should complement each other rather than compete with each other. There-
fore, we are in line with the general approach studied in [46, 17] which pro-
motes the constraint ∥w∥ℓr ≤ 1 with r > 1. Essentially, our method can be
viewed as an extension of the latter model from vectors in Rp to functions
with derivatives in Hq. We aim to solve the following problem:

min
w∈Rq+1

max
α∈Rn

n∑
i=1

αi −
1

2

n∑
i=1

n∑
i′=1

αiαi′cici′

q∑
s=0

wsK
s
ii′ (24)

s.t.


∑n

i=1 αici = 0;
0 ≤ αi ≤ µ,∀i = 1, . . . , n;
w ≥ 0, ∥w∥ℓr ≤ 1.

The optimization procedure is similar to the unsupervised case and con-
sists in alternating between (i) maximizing with respect to α with a fixed
w using the regular SVM algorithm, and (ii) minimizing with respect to w
with a fixed α. The second problem has a closed-form solution that can be
stated using Proposition 1. Let us consider the opposite of the minimization
in w, and introduce the vector z ∈ Rq+1 with elements given by:

zs =
n∑

i=1

n∑
i′=1

αiαi′cici′K
s
ii′ , ∀s = 0, . . . , q. (25)

Note that since for all s, Ks is positive semi-definite, hence zs is non-negative.

Corollary 2. Let α be fixed and r > 1, then the following optimization
problem:

min
w∈Rq+1

n∑
i=1

αi −
1

2

n∑
i=1

n∑
i′=1

αiαi′cici′

q∑
s=0

wsK
s
ii′ (26)

s.t.

{
w ≥ 0
∥w∥ℓr ≤ 1,

is convex and the optimal solution is given by ∀s = 0, . . . , q:

w∗
s =

(
∑n

i=1

∑n
i′=1 αiαi′cici′K

s
ii′)

1
r−1(∑q

s′=0(
∑n

i=1

∑n
i′=1 αiαi′cici′Ks′

ii′)
r

r−1

) 1
r

. (27)
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Algorithm 2: Multiple kernel SVM for functions with derivatives
(MK-SVM-FD).

Input: {yij}i=1,...,n;j=1,...,p (sampled values of FD), q ≥ 0 (maximum
order of derivative), r > 1 (ℓr norm, default 2), {ks}s=0,...,q

(kernel functions, default Gaussian), σ (kernel
hyper-parameter if any)

Output: α (support vectors’ weight), w (weight vector of size q + 1)
1 Project the sampled FD onto a pre-defined set of q + 2 + p B-splines

of order q + 2 and determine {xi}i=1,...,n by solving (8);
2 Determine {Dsxi}i=1,...,n,∀s = 1, . . . , q;
3 Determine {Ks = (ks(Dsxi, D

sxi′))i,i′=1,...,n}, ∀s = 0, . . . , q;
4 Normalize the kernel matrices Ks,∀s = 0, . . . , q (optional);
5 Initialize a uniform weight vector w;
6 while Stopping condition not reached do
7 Fix w and apply the SVM algorithm with multiple kernel

K =
∑q

s=0wsK
s to determine a new α;

8 Fix α and apply Corollary 2 to determine a new w;

9 end
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In Algorithm 2 we give the pseudo-code of our multiple kernel SVM pro-
cedure for functions with derivatives that we denote by MK-SVM-FD. Like-
wise the clustering case, the overall objective function is improved at each
iteration, as a consequence Algorithm 2 converges to a local optimum.

4.3. Experiments with the MK-SVM model for functions with derivatives

4.3.1. Experiments settings

We are interested in exploring the same research questions raised in sub-
section 3.3, but within a supervised context. Consequently, we now incorpo-
rate the labels of the data into the learning process to infer mappings aimed
at predicting the correct label c given any instance x ∈ Hq. Our objective is
to compare the prediction functions derived from different FD representations
using various sets of derivatives, kernel functions, and weighting schemes for
the views. Accordingly, similar to sub-section 3.3.1, we examined the dif-
ferent kernel matrices Ka0, Ka1, Ka2, Ka01t and Ka012t with a = l, g and
t = ∅, o.

In the supervised learning case, the evaluation criterion we used is the
accuracy rate, given by:

Accuracy(C,L) =
1

n

k∑
l=1

|Cl ∩ Ll| (28)

where L is the true class distribution and C is the one predicted by MK-
SVM-FD.

4.3.2. Experiments with simulated data

The artificial data used for the supervised task is the same as for the
unsupervised task as detailed in sub-section 3.3.2. We randomly generated
1200 curves with 600 coming from group 1 given by (18), and 600 from group
2 following (19). The sample was randomly split into a training set of 1000
curves and a test set of 200 curves. In regard to the hyper-parameter µ, it was
estimated in a grid search manner and chosen among the following values:
{0.01, 0.1, 1, 10, 100}. More precisely, we compared the performances of each
value based on a 5-fold cross-validation using the training set. The value of µ
that provided the best validation accuracy rate on average was selected. We
then estimated the model again using this tuned hyper-parameter value but
utilizing the entire training set. Subsequently, we applied the latter model
on the test set of 200 curves and measured the (test) accuracy rate.
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We repeated this procedure 50 times. The variations of the test accuracy
rates are shown in Figure 6 for both linear and Gaussian kernel based repre-
sentations.

l0 l1 l2 l0
1

l0
1o

l0
12

l0
12

o g0 g1 g2 g0
1

g0
1o

g0
12

g0
12

o

0.82

0.84

0.86

0.88

0.90

0.92

Accuracy

Figure 6: Box plots of test accuracy rates of MK-SVM-FD using 50 samples. 1000 curves
(half of group 1, half of group 2) were used for training and 200 curves for testing. Each box
plot corresponds to a kernel representation with acronym given in x-axis. The acronym
suffix o indicates weights optimization. From left to right: linear kernel based represen-
tations then Gaussian kernel based representations. The red triangles indicate the mean
values.

As before, we used paired t-test with a significance level of 5% in order
to provide a more robust comparison of the assessment scores between repre-
sentations. If the null hypothesis of no difference between the mean averages
is accepted, it is indicated with the symbol ∼.

Figure 6 demonstrates the superiority of Gaussian based representations
over the linear based ones. We can summarize these findings as follows:

• For single views: gs ≳ ls with s = 0, 1, 2.

• For multiple views: gst ≳ lst with s = 01, 012, and t = ∅, o.

Using derivatives and uniform weights did not boost the performances:

31



• g0 ≳ g01,

• g0 ≳ g012,

• g01 ∼ g012.

However, weights optimization did improve the results:

• g01o > g01 and g01o > g0,

• g012o > g012 and g012o > g0.

In summary, for the artificial dataset, Gaussian kernel based represen-
tations outperform linear kernel based representations. Furthermore, incor-
porating derivatives increases the assessment scores but only when weights
optimization is carried out. The two best models are given by the represen-
tations g01o and g012o which support our classification model based on a
multiple kernel framework with optimized weights.

4.3.3. Experiments with real-world data

Next, we applied MK-SVM-FD to the 6 real-world datasets described pre-
viously in Table 1. In the multiclass case, we applied SVM using a one-versus-
one strategy10 and a voting scheme for prediction. To determine the optimal
hyper-parameter µ, we conducted a 10-fold cross-validation. The grid search
was performed within the subset {0.01, 0.1, 1, 10, 100}. The selected value
was the one that resulted in the highest average validation accuracy rate over
the 10 folds. Since these datasets are small, we did not utilize a separate test
set. Therefore, our analysis is based on the mean validation accuracy rates
across the 10 folds.

In most cases, the Gaussian kernel based representations provided better
assessment measures than the linear kernel based representations. Therefore,
in what follows, we only expose the experimental results related to the use
of the Gaussian kernel. Figure 7 illustrates the box plots representing the
distributions of the validation accuracy rates of the tuned model for each
representation among g0, g1, g2, g01, g01o, g012 and g012o.

For each dataset, we provide below the ranked list of single view represen-
tations in descending order of the mean validation accuracy rates. For two

10In this case, the overall objective function is the sum of objective functions of binary
classifiers across all pairs of classes.
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Figure 7: Box plots of validation accuracy rate measures of MK-SVM-FD using 10-fold
cross-validation. Each box plot corresponds to a Gaussian kernel based representation
with acronym given in x-axis. The acronym suffix o indicates weights optimization. Each
graphic corresponds to the results of a real-world dataset whose name is specified on top
of the frame. The red triangles indicate the mean values.

subsequent cases, we compared the distributions of the validation accuracy
rates over the folds using the same paired t-test as before. We obtained the
following outcomes:

• Growth: g0 ≳ g1 > g2.

• Trace: g0 ∼ g1 > g2.

• poblenou: g0 ∼ g1 ∼ g2.

• Meat : g0 ≫ g1 ≫ g2.

• phoneme: g0 ≫ g1 ≫ g2.

• SwedishLeaf : g0 ≫ g2 ∼ g1.
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For all 6 cases, original functions provided the best scores compared to
1st order and 2nd order derivative functions.

Next, we add the results of multiview representations with uniform weights.
The relative positions of g01 and g012 with respect to the best and worst
single view performances are as follows:

• Growth: g0 ∼ g01 ∼ g012 ≫ g2.

• Trace: g01 > g012 ∼ g0 > g2.

• poblenou: g0 ∼ g01 ∼ g012 ∼ g2.

• Meat : g012 ∼ g0 ∼ g01 ≫ g2.

• phoneme: g0 ∼ g01 > g012 ≫ g2.

• SwedishLeaf : g0 ∼ g01 ≳ g012 ∼ g1.

Despite differences in mean validation accuracy scores, the multiview ap-
proach g01 performed similarly to or better than the best single view, g0.
More broadly, as with the clustering task, multiple kernel representations
are generally risk-averse strategies for classification problems: the accuracy
scores of multiview representations are always higher than those of the least
performing single view.

Considering non-uniform metrics between functions and derivatives using
weights optimization, we got the following ranked lists:

• Growth: g01o ∼ g012o ∼ g01 ∼ g012.

• Trace: g01o ∼ g012o ∼ g01 > g012.

• poblenou: g012o ∼ g01o ∼ g01 ∼ g012.

• Meat : g012o ∼ g01o ∼ g012 ∼ g01.

• phoneme: g012o ∼ g01o ∼ g01 > g012.

• SwedishLeaf : g012o ∼ g01o≫ g01 ≳ g012.

Based on these benchmarks, we can conclude that weights optimization is
a much better strategy than using uniform weights when integrating deriva-
tives. In the Trace and SwedishLeaf cases in particular, weights optimization
dramatically boosts accuracy scores.
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The summary of the experimental results on classification tasks suggests
that Gaussian kernels generally outperform linear kernels. Moreover, incor-
porating derivatives and optimizing the views’ weights perform as well as or
better than the best single view representation. These outcomes support our
MK-SVM-FD method.

5. Conclusion and future work

FDA offers a powerful means to analyze continuous phenomena through
statistical and machine learning techniques, enriched with tools from func-
tional analysis. In this paper, we considered FD as elements of the Sobolev
space Hq. We have presented a new framework enabling the learning of versa-
tile representations of FD for both clustering and classification purposes. Our
approach relies on two key components. Firstly, we leverage kernel methods
to implicitly map FD and their derivative functions into (potentially distinct)
RKHS. Secondly, we introduce methods to learn how to combine these kernel
functions for both unsupervised (MK-KM-FD) and supervised (MK-SVM-
FD) learning tasks.

In our experimental evaluations using both simulated and real-world data,
we observed that employing a Gaussian kernel can significantly enhance both
clustering and classification performances compared to using a linear kernel.
Additionally, we found that optimizing the weights further improve clustering
outcomes and reduces sensitivity to random initialization in the clustering
task. In classification, MK-SVM-FD with weights optimization delivered
remarkable performances. Overall, our methods demonstrate robustness in
combining multiple views provided by successive derivatives, making them
well-suited for clustering and classifying smooth functional data, especially
when the quality of individual representations is uncertain.

In future work, we plan to extend our framework by incorporating weights
functions instead of scalar weights to balance each derivative order. This ap-
proach could leverage techniques from sparse clustering and interpretable
SVM for FD. Furthermore, our methods can be extended to handle multi-
variate functional data, which naturally pose multiview learning problems.
Another promising direction is exploring physics-informed machine learning,
where we aim to integrate more general differential operators into our frame-
work to incorporate physics constraints into the learning process.
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Proof of Proposition 1

Proof. The Lagrangian function of Problem (3) reads:

L(w,α, β) = w⊤z + w⊤α + β(1 − ∥w∥ℓr), (A)

where α ∈ Rn and β ∈ R are the Lagrange multipliers which should be non-
negative. Setting the derivative of L with respect to the primal variable to
zero, it comes:

∂L

∂w
(w,α, β) = 0 ⇔ z + α− β

wr−1

∥w∥r−1
ℓr

= 0,

⇔ wr−1

∥w∥r−1
ℓr

=
z + α

β
,

where, by a slight abuse of notation, wr−1 = (wr−1
s )s=0,...,q.

Clearly, β should be strictly greater than 0 and by the complementary con-
ditions of the KKT conditions, this implies ∥w∥ℓr = 1. Consequently, the
previous equation simplifies into:

wr−1 =
z + α

β
, that is to say, wr−1

s =
zs + αs

β
,∀s = 0, . . . , q.

By hypothesis zs ≥ 0 and r > 1. This implies ws ≥ 0 and thus, by the
complementary conditions of the KKT conditions again, we deduce that αs =
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0,∀s = 0, . . . , q. From this reasoning, we obtain:

w =
z

1
r−1

β
1

r−1

, that is to say, ws =
z

1
r−1
s

β
1

r−1

,∀s = 0, . . . , q. (B)

Now, using the activated constraint ∥w∥ℓr = 1 again, it comes:(∑
s

wr
s

) 1
r

= 1 ⇔

(∑
s

(
zs
β

) r
r−1

) 1
r

= 1,

⇔

(∑
s

zs
r

r−1

) 1
r

= β
1

r−1 . (C)

By plugging (C) into (B) we obtain the following stationary point which
states Equation (4) of Proposition 1:

w∗ = (w∗
s)s=0,...,q with w∗

s =
z

1
r−1
s(∑q

s′=0 z
r

r−1

s′

) 1
r

.

Moreover, the KKT multipliers are given by:

α∗ = 0q+1,

β∗ =

(
q∑

s=0

zs
r

r−1

) r−1
r

= ∥z∥ℓr/(r−1)
.

Next, we need to prove that (w∗,α∗, β∗) is a maximizer. To this end,
we need to study ∇2

wL(w∗,α∗, β∗), the Hessian matrix of the Lagrangian
function with respect to w evaluated at (w∗,α∗, β∗). From (A) we can see
that ∇2

wL(w,α, β) is the same as ∇2
wM(w, β) with:

M(w, β) = −β∥w∥ℓr .

By the Minkowski inequality, we can easily show that ∥w∥ℓr is a strictly
convex function for r > 1. Furthermore, since β∗ > 0, we deduce that
∇2

wM(w∗, β∗) is negative definite and so is ∇2
wL(w∗,α∗, β∗). As a conse-

quence, the second order sufficient conditions are met and w∗ is a global
maximizer.
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