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Organization

Organization : 3 lessons (of 3h each)

Outline of today’s lesson :

1 The clustering problem

2 Different types of data and different types of proximity measures
Continuous variables
Discrete variables and binary data
Mixed-typed data
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Data Clustering : what is it about ?

Data clustering (or just clustering), also called cluster analysis,
segmentation analysis, taxonomy analysis, or unsupervised
classification : set of methods that aim at creating groups of objects, or
clusters, such that objects in a cluster are very similar and objects in
different clusters are distinct.

Do not confuse it with supervised classification : in a supervised context,
objects are assigned to predefined classes, or categories or labels and the
goal is to learn a decision function from a training (labeled) dataset in
order to correctly categorize new objects.

In data clustering the goal is to automatically discover a classification of
the objects.

In the following, the term classification will refer to the concept of
organizing similar objects into groups.
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Classification in human activities and sciences
Classification is a basic human activity :

Early men must have been able to realize that many individual objects
shared certain properties such as eatable, or poisonous. . .

Classification is needed for the developmet of langage : each noun in
a langage, is essentially a label used to describe a class of things
which have features in common . . .

Classification is also fundamental to most branches of science :

In biology, the theory and practice of classifying organisms is generally
known as taxonomy

In chemistry, classification of chemical elements regarding to their
atomic structure

In astronomy, classification of stars and galaxies . . .

A classification scheme may simply represent a convenient method for
organizing a set of objects so that it can be understood more easily
and the information it conveys retrieved more efficiently.
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Data clustering : why is it useful ?

There is an ever growing number of large databases available in many
areas of science due to the development of IT. For large datasets,
designing a classification scheme by hand is unfeasible.

In that context, data clustering is the process which aims at
automatically discovering a classification scheme in order to organize the
objects of a large database.

The exploration of such databases using data clustering and other
multivariate analysis techniques is now often called data mining.
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Some applications of data clustering

In market research, cluster analysis is used to segment the market and
determine target markets. Another example : group a large number of
respondents according to their preferences for particular products and
identification of a “niche product” for a particular type of consumers.

In information retrieval, cluster analysis is used to cluster the results
provided by a search engine in order to organize the web pages
according to topics. User can browse the retrieved items in a more
efficient way (for example, have you ever tried yippy.com (formerly
clusty.com) ? )

In image processing, cluster analysis is used to segment a gray-scale
or a color image in order to detect objects represented in the image
and/or to compress the image.

In on-line social network analysis (such as Facebook, LinkedIn,...),
graph data clustering is used in order to detect communities among
people. . .
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The clustering problem

Vocabulary and notations
In the literature of data clustering, different words may be used to express
the same thing. We are given a database or a dataset to which we
associate a data table X with n rows and p columns.

X =




x11 x12 . . . x1p

x21 x22 . . . x1p
... . . . . . .

...
xn1 xn2 . . . xnp




A row of X is associated to an object, a data point or an item. . .
xi = (xi1, . . . , xip) is the (column) vector of size (p × 1) associated to
the data point xi or i of the set of items D = {x1, . . . , xn}
We will also use x and y to represent two vectors of D
A column of X is an attribute, a variable or a feature. . . Objects are
represented as vectors of the space generated by the set of features.
The representation space is also called the input space.
xij is the value of variable j assigned to the data point i (or xi)
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The clustering problem

Different types of classification scheme

We can have different types of classification schemes :

A flat partition (set of clusters or segments)

A hierarchical tree or taxonomy (a set of nested partitions)

Hard or soft (or fuzzy) memberships to clusters
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The clustering problem

Clustering or segmentation or partition is the same as
equivalence relation

Definition. (Binary relation on D)

A binary relation R on a set of objects D, is a couple (D,G (R)), where
G (R) called the graph of the relation R, is a subset of the Cartesian
product D× D. If we have (x, y) ∈ G (R), then we say that object x is in
relation with object y for the relation R. This will be denoted by xRy.

Definition. (Equivalence relation on D)

A binary relation (D,G (R)) is an equivalence relation is it satisfies the
following properties :

Reflexivity : ∀x (xRx)

Symmetry : ∀x, y (xRy⇒ yRx)

Transitivity :∀x, y, z ((xRy ∧ yRz)⇒ xRz)
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The clustering problem

Illustration
The graph below represents the binary relation R such that xiRxj ⇔
there’s an edge between xi and xj

x1

x2

x4

x5

x3

x6

Partition : {x1, x2, x3}, {x4, x5}, {x6}

Reflexivity :
x1Rx1, . . . , x6Rx6

Symmetry :
(x1Rx2 ∧ x2Rx1),

. . .
(x4Rx5 ∧ x5Rx4)

Transitivity :
x1Rx2 ∧ x2Rx3 ⇒ x1Rx3

x1Rx3 ∧ x3Rx2 ⇒ x1Rx2

. . .
x3Rx2 ∧ x2Rx1 ⇒ x3Rx1
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The clustering problem

Hierarchical clustering and dendrograms

Definition. (Hierarchical clustering and dendrograms)

A hierarchical clustering on a set of objects D is a set of nested
partitions of D. It is represented by a binary tree such that :

The root node is a cluster that contains all data points

Each (parent) node is a cluster made of two subclusters (childs)

Each leaf node represents one data point (singleton ie cluster with
only one item)

More formally, if n, n′ are two nodes of the hierarchical clustering then :

(n ∩ n′ = ∅) ∨ (n ⊂ n′) ∨ (n′ ⊂ n)

A hierarchical clustering scheme is also called a taxonomy. In data
clustering the binary tree is called a dendrogram.
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The clustering problem

Illustration

x1
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The clustering problem

The partitioning problem

We are given F (D,C ) which is a function that measures the quality of the
clustering C given the set of data points D.

Let us denote Cn the set of all partitions of a set of n data points then the
clustering problem can be formally define as follows :

max
C∈Cn

F (D,C )

A naive approach to solve the clustering problem is the following one :

1 Enumerate all possible partitions in Cn

2 For all C ∈ Cn compute the value F (D,C )

3 Keep the partition C ∗ such that ∀C ∈ Cn : F (D,C ∗) ≥ F (D,C )
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A naive approach to solve the clustering problem is the following one :

1 Enumerate all possible partitions in Cn

2 For all C ∈ Cn compute the value F (D,C )

3 Keep the partition C ∗ such that ∀C ∈ Cn : F (D,C ∗) ≥ F (D,C )
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The clustering problem

A combinatorial problem

The number of partitions with k clusters of a set of n items is the Stirling
number of a second kind S(n, k) :

S(n, k) =
1

k!

k∑

j=0

(−1)j
(

n

k

)
jn

The total number of partitions of a set of n items is the Bell number B(n) :

B(n) =
n∑

k=0

S(n, k)
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The clustering problem

A combinatorial problem (cont’d)

Some values of S(n, k) and B(n) :

n\k 0 1 2 3 4 5 6 B(n)

0 1 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 1
2 0 1 1 0 0 0 0 2
3 0 1 3 1 0 0 0 5
4 0 1 7 6 1 0 0 15
5 0 1 15 25 10 1 0 52
6 0 1 31 90 65 15 1 203

Another example : B(71) ' 4× 1074 !

It is thus unfeasible to enumerate all possible partitions of a set whose
cardinal is greater than some tens ! In practice we use heuristics ie
clustering algorithms.
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The clustering problem

The clustering process

DATABASE
(numerical 
data, texts, 

images, 
networks, …)

Initially there is a database of objects which could be of any kind
depending on the type of application.
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The clustering problem

The clustering process

DATABASE
(numerical 
data, texts, 

images, 
networks, …)

FEATURE
MATRIX

NUMERICAL
REPRESENTA

TION

PROXIMITY
MATRIX

We assume that objects have a (structured) numerical representation. This
is our starting point but there are different types of numerical data.
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The clustering problem

The clustering process

DATABASE
(numerical 
data, texts, 

images, 
networks, …)

FEATURE
MATRIX

NUMERICAL
REPRESENTA

TION

PROXIMITY
MATRIX

CLUSTERING
OUTPUT

CLUSTERING
ALGORITHM

Depending on the type of clustering algorithm we can have as input a
feature matrix (data table like X) or a proximity matrix.
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The clustering problem

The clustering process

DATABASE
(numerical 
data, texts, 

images, 
networks, …)

FEATURE
MATRIX

NUMERICAL
REPRESENTA

TION

PROXIMITY
MATRIX

CLUSTERING
OUTPUT

CLUSTERING
ASSESSMENT

CLUSTERING
ALGORITHM

Once the clustering algorithm is done, we have to assess the clustering
outputs.
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The clustering problem

The clustering process

DATABASE
(numerical 
data, texts, 

images, 
networks, …)

FEATURE
MATRIX

NUMERICAL
REPRESENTA

TION

PROXIMITY
MATRIX

CLUSTERING
OUTPUT

CLUSTERING
ASSESSMENT

CLUSTERING
ALGORITHM

Depending on the quality of the clustering output, either we keep the
latter as the result or we start over with another modeling.
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The clustering problem

Some comments

We don’t directly deal with unstructured objects such as texts,
images,. . . and with how these objects can be numerically represented.
This is text processing, image processing,. . .

Our input is a numerical representation of the objects which is either
a feature matrix X or a proximity matrix between pairs of data points.

There are two main critical points : the proximity measure and the
(model behind a) clustering algorithm.

There are many types of numerical data and also many kinds of
proximity measures.

There are many clustering algorithms.

There are many ways to assess clustering methods.

In brief, clustering is not a straightforward process !
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Different types of data and different types of proximity measures

Outline

1 The clustering problem

2 Different types of data and different types of proximity measures
Continuous variables
Discrete variables and binary data
Mixed-typed data
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Different types of data and different types of proximity measures

Recalling the clustering process

DATABASE
(numerical 
data, texts, 

images, 
networks, …)

FEATURE
MATRIX

NUMERICAL
REPRESENTA

TION

PROXIMITY
MATRIX

CLUSTERING
OUTPUT

CLUSTERING
ASSESSMENT

CLUSTERING
ALGORITHM
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Different types of data and different types of proximity measures

Link with other courses
Numerical representation of objects :

Multidimensional Data Analysis and dimension reduction techniques
such as Principal Component Analysis (PCA) or Factor Analysis (FA)
or Correspondence Analysis (CA), . . . and information visualization :

I To represent the data points in low dimensional euclidean spaces
I To visualize the data points in order to see if there is a “natural”

organization of the latter

One can do a dimension reduction of the data before the clustering
analysis.

Here given the representation space (reduced or not), we focus on
how to measure the proximity between points :

I What is the definition of a proximity measure ?
I There are different types of numerical data : what are the most used

proximity measures for each type ?
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Different types of data and different types of proximity measures

Definition of a dissimilarity and a distance measure

Definition. (Dissimilarity and distance measures)

Let D be a set of data points and let D : D× D→ R+ be a real function.
D is a dissimilarity measure if it satisfies the following properties :

1 Non-negativity : ∀x, y : D(x, y) ≥ 0

2 Symmetry : ∀x, y : D(x, y) = D(y, x)

3 Identity and indiscernability : ∀x, y : x = y⇔ D(x, y) = 0

If a dissimilarity measure D also satisfies the following condition, it is a
distance measure.

4 Triangle inequality : ∀x, y, z : D(x, y) ≤ D(x, z) + D(z, y)

A function D that satisfies conditions 3 (∀x : D(x, x) = 0) and 4 is said to
be a metric. Thus, a distance measure is a metric.
If from a distance matrix D with Dij = D(xi, xj) we can represent the data
points in an euclidean space 1 then D is said to be euclidean.

1. a finite vectorial space with a dot product
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Different types of data and different types of proximity measures

Metric vs euclidean

Theorem.

If D is euclidean then D is a distance measure.

However, not all distance measures D give an euclidean distance matrix D.
Here is a counter example from [Gower and Legendre, 1986] :

D =




x1 x2 x3 x4

x1 0 2 2 1.1
x2 2 0 2 1.1
x3 2 2 0 1.1
x4 1.1 1.1 1.1 0




All triples satisfy the triangle inequality

x1, x2, x3 form an equilateral triangle of length 2

x4 is equidistant to all former data points with length 1.1
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Different types of data and different types of proximity measures

Metric vs euclidean distance (cont’d)

It is impossible to represent the data points in an euclidean space.

2 2

2

1.1

1.11.1

x1

x3x2

x4

D =




x1 x2 x3 x4

x1 0 2 2 1.1
x2 2 0 2 1.1
x3 2 2 0 1.1
x4 1.1 1.1 1.1 0




In an euclidean space, D(x4, xi) with
i = 1, . . . , 3 should have been 1.15.
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Different types of data and different types of proximity measures

Metric vs euclidean distance (cont’d)

It is not mandatory for D to be euclidean but it is often required D to
satisfy the triangle inequality for all triples. Rationale : when comparing
three data points we often represent them in an (local) euclidean space.

x2

x3x1

x2

x3

x1

D(x1, x3) ≤ D(x1, x2) + D(x2, x3) D(x1, x3) = D(x1, x2) + D(x2, x3)
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Different types of data and different types of proximity measures

Metric vs euclidean distance (cont’d)
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Different types of data and different types of proximity measures

On triangle inequality

However there are cases where the triangle inequality is not a good
condition [Tversky, 1977, Santini and Jain, 1999].

x1 x2 x3

Here, we could have D(x1, x2) = 1, D(x2, x3) = 1, and D(x1, x3) = 3
such that D(x1, x3) � D(x1, x2) + D(x2, x3)

.
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Different types of data and different types of proximity measures

Definition of a similarity measure
No consensus on the axioms defining a similarity measure.

Definition. (Similarity measure)

Let D be a set of items represented in an euclidean space and let
S : D× D→ R be a real function. S is a similarity measure if it satisfies
the following properties :

1 Boundary conditions : there are two fix numbers a and b such that
∀x, y : a ≤ S(x, y) ≤ b

2 Symmetry : ∀x, y : S(x, y) = S(y, x)

3 Identity and indiscernability : ∀x, y : x = y⇔ S(x, y) = b

The similarity measure S is said to be metric if the pairwise similarity
matrix S with Sij = S(xi, xj) satisfies the following condition :

4 Metric : S is positive semi-definite PSD (all eigenvalues are non
negative)

Note that most of times, we have a = 0 or a = −1 and b = 1.
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Dissimilarities, Distances, similarities and metrics

Theorem.

D is euclidean if the (n × n) matrix W of general term

Wij = −1
2

(
D2

ij −
D2

i.
n −

D2
.j

n + D2
..

n2

)
is PSD (where D2

.j =
∑n

i=1 D2
ij).

Note that W = (I− 11>
n )∆(I− 11>

n ) with ∆ij = −1
2D2

ij, I being the unit
matrix and 1 the vector full of 1.

Corollary.

If D is euclidean then W is metric and it can be interpreted as a pairwise
dot product matrix.

Exercise 1 : Using R, show that the distance measure D of the previous
counter example in slide 2 is not euclidean.
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Dissimilarities, Distances, similarities and metrics (cont’d)

Theorem.

If a similarity matrix S is PSD with elements 0 ≤ Sij ≤ 1 and Sii = 1, then
the dissimilarity matrix D of general term Dij =

√
1− Sij is euclidean.

Corollary.

If the pairwise matrix of general term
√

1− Sij is not euclidean then S is
not PSD.

Theorem.

If D is a dissimilarity matrix then there exists a constant h such that the

matrix with general term
√

D2
ij + h,∀i 6= j , is euclidean.

In that case, h ≥ −2λn where λn is the smallest eigenvalue of
W = (I− 11>

n )∆(I− 11>
n ).

Exercise 2 : Using R, show how to transform the distance measure D of
the previous counter example in slide 2 so that it becomes euclidean.
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Different types of data and different types of proximity measures

Different types of numerical data

DATA TYPES

CONTINUOUS DISCRETE

BINARY NOMINAL

Different types of numerical data hence different kinds of proximity
measures.
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Introduction

The data points are represented in Rp

Each dimension of Rp is a feature

The data table X is such that xi is a vector of Rp.

X =




x11 x12 . . . x1p

x21 x22 . . . x1p
... . . . . . .

...
xn1 xn2 . . . xnp



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Example

> install.packages("datasets")

> library(datasets)

> data(iris)

> print(iris[,-5])

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 5.1 3.5 1.4 0.2

2 4.9 3.0 1.4 0.2

3 4.7 3.2 1.3 0.2

4 4.6 3.1 1.5 0.2

5 5.0 3.6 1.4 0.2

6 5.4 3.9 1.7 0.4

7 4.6 3.4 1.4 0.3

8 5.0 3.4 1.5 0.2

9 4.4 2.9 1.4 0.2

10 4.9 3.1 1.5 0.1

...
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Data normalization
In general, raw data contain features which are different measurements in
different scales (eg cm, kg, Euros,. . . ). In that case, any proximity measure
can be biased.

Before applying any proximity measure or any clustering algorithm, one
should normalize the data. Let denote X∗ the raw data set :

X∗ =




x∗11 x∗12 . . . x∗1p
x∗21 x∗22 . . . x∗1p

... . . . . . .
...

x∗n1 x∗n2 . . . x∗np




To normalize raw data, we can subtract a location measure and divide a
scale measure for each feature j :

xij =
x∗ij − L∗j

M∗j
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Data normalization (cont’d)

Let us denote for each feature j its :

mean average : µ∗j = 1
n

∑n
i=1 x∗ij

standard deviation : σ∗j =
(

1
n−1

∑n
i=1(x∗ij − µ∗j )2

)1/2

range : r∗j = maxi{x∗ij} −mini{x∗ij}

The two most used data normalization using the previous equation are :

z-score : xij =
x∗ij−µ∗j
σ∗j

; ∀j : µj = 0 and σj = 1.

range : xij =
x∗ij−mini{x∗ij }

r∗j
; ∀j : µj =

µ∗j −mini{x∗ij }
r∗j

and σj =
σ∗j
r∗j

.

This method is sensitive to outliers.
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Data normalization (cont’d)

Some authors have definied other types of normalization methods that fall
into the following approach :

xij =
x∗ij − L∗j

M∗j

See [Milligan and Cooper, 1988] for eg, for more methods in that context.
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Data normalization (cont’d)

Another approach to normalize raw data is to transform, for each feature
j , the measurements into ranks. Let us denote τ the permutation of n
elements such that the sequence {x∗τ(1)j , x

∗
τ(2)j , . . . , x

∗
τ(n)j , } is the

measurements of the attribute j sorted in increasing order.

Then the rank normalization is given as follows :

xij = k if i = τ(k)

∀j : µj = n+1
2 and σ2

j = (n + 1)
(

2n+1
6 − n+1

4

)
.

Unlike the range standardization, the rank standardization reduces the
impact of outliers.
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Example

> install.packages("clusterSim")

> library(clusterSim)

> iris.normalization=data.Normalization(iris[,-5],type="n1")

> print(iris.normalization)

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 -0.89767388 1.01560199 -1.33575163 -1.3110521482

2 -1.13920048 -0.13153881 -1.33575163 -1.3110521482

3 -1.38072709 0.32731751 -1.39239929 -1.3110521482

4 -1.50149039 0.09788935 -1.27910398 -1.3110521482

5 -1.01843718 1.24503015 -1.33575163 -1.3110521482

...

> mean(iris.normalization)

Sepal.Length Sepal.Width Petal.Length Petal.Width

-4.484318e-16 2.034094e-16 -2.895326e-17 -2.989362e-17

> sd(iris.normalization)

Sepal.Length Sepal.Width Petal.Length Petal.Width

1 1 1 1

Exercise 3 : Write an R function that takes as an input a raw data table
and perfoms the rank normalization.
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Classic distance measures
Below is a non exhaustive list of distance measures between two data
points x, y ∈ Rp :

Euclidean distance :

Deucl(x, y) =

√√√√
p∑

j=1

(xj − yj)2

=
√

(x− y)>(x− y)

Manhattan distance or “city block” distance :

Dmanh(x, y) =

p∑

j=1

| xj − yj |

Maximal distance :

Dmax(x, y) = max
1≤j≤p

{| xj − yj |}
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Minkowski distance measures

The Euclidean distance, Manhattan distance, and maximum distance are
three particular cases of the Minkowski distance defined by :

Dmink(x, y) =




p∑

j=1

| xj − yj |r



1/r

Previous cases are given by :

Euclidean distance : r = 2

Manhattan distance : r = 1

Max distance : r = +∞
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Mahalanobis distance measure
Let Σ be the (p × p) covariance matrix with general term
Σjj ′ = 1

n

∑n
i=1 (xij − µj)

(
xij ′ − µj ′

)
.

Note that :

Σ =
1

n
(X−M)> (X−M)

with M being the (n × p) matrix whose column j is µj1.

The Mahalanobis distance is then defined as follows :

Dmaha(x, y) =
√

(x− y)>Σ−1(x− y)

Properties :

Dmaha applies a weighting scheme to the data. It can alleviate some
distortions caused by existing linear dependences between variables.
Dmaha is invariant to any nonsingular transformation of X. If
x′ = Cx;∀x ∈ D with C being invertible then
Dmaha(x′, y′) = Dmaha(x, y) for all pairs (x, y). Exercise 4 : Show it.
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)
.
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1

n
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Euclidean distances and dot products
Let 〈., .〉 denote the dot product of the euclidean space Rp span by the set
of features. We have :

〈x, y〉 =

p∑

j=1

xjyj = x>y

We also recall that :

The norm of x is denoted ‖x‖ and is given by :

‖x‖ =
√
〈x, x〉

The euclidean distance Deuc(x, y) is the same as ‖x− y‖ and thus :

‖x− y‖ =
√
〈x− y, x− y〉

=
√
〈x, x〉+ 〈y, y〉 − 2〈x, y〉

=
√
‖x‖2 + ‖y‖2 − 2〈x, y〉
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Cosine proximity measures
The cosine or angular proximity measure is one of the most used proximity
measure. It is defined as follows :

Scos(x, y) =
〈x, y〉
‖x‖‖y‖

= 〈 x

‖x‖ ,
y

‖y‖〉

= cos(θ(x, y))

where θ(x, y) is the angle between the two vectors.

x2

x1

θ(x1, x2)
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Cosine proximity measures (cont’d)

Properties :

1 Boundary conditions : there are two fix numbers a and b such that
∀x, y : −1 ≤ Scos(x, y) ≤ 1

2 Symmetry : ∀x, y : Scos(x, y) = Scos(y, x)

3 Indiscernability of identicals : ∀x, y : x = y⇒ Scos(x, y) = 1
BUT no identity of “indiscernibles” : Scos(x, y) = 1 ; x = y

Counter examples : collinear vectors y = αx with α > 0.

y

x

4 Metric : Scos is PSD (Gram matrix)
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Different types of data and different types of proximity measures Continuous variables

Recalling Gram matrices

Definition.

Let D = {x1, . . . , xn} a set of vectors belonging to an euclidean space with
dot product 〈., .〉. Then the (n × n) matrix G of general term Gij = 〈xi, xj〉
is called a Gram matrix.

Theorem.

Any Gram matrix is PSD. Any PSD matrix is the Gram matrix for some
set of vectors.
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Different types of data and different types of proximity measures Discrete variables and binary data

Introduction
The data points are described by a set of q categorical variables each
of them having pj categories (or states or classes or labels).

Given a categorical feature, its categories can be :
I on an ordinal scale (eg taste : good, medium, bad)
I on a nominal scale (eg color : blue, brown, green)

Given a categorical feature, its categories can also be :
I symmetric : they have all the same importance
I asymmetric : some of them have more importance than others

We assume that the data points are represented in the space spanned
by {0, 1}p with p =

∑q
j=1 pj .

Each dimension of {0, 1}p corresponds to a state of a categorical
variable and 0 and 1 respectively means the absence xor the presence
of the latter
Ordinal scales will be treated similarly as nominal scales
If a category is not important than its dimension is removed
The data table X is such that xi is a binary vector we thus talk about
binary data

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 46

Different types of data and different types of proximity measures Discrete variables and binary data

Introduction
The data points are described by a set of q categorical variables each
of them having pj categories (or states or classes or labels).
Given a categorical feature, its categories can be :

I on an ordinal scale (eg taste : good, medium, bad)
I on a nominal scale (eg color : blue, brown, green)

Given a categorical feature, its categories can also be :
I symmetric : they have all the same importance
I asymmetric : some of them have more importance than others

We assume that the data points are represented in the space spanned
by {0, 1}p with p =

∑q
j=1 pj .

Each dimension of {0, 1}p corresponds to a state of a categorical
variable and 0 and 1 respectively means the absence xor the presence
of the latter
Ordinal scales will be treated similarly as nominal scales
If a category is not important than its dimension is removed
The data table X is such that xi is a binary vector we thus talk about
binary data

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 46

Different types of data and different types of proximity measures Discrete variables and binary data

Introduction
The data points are described by a set of q categorical variables each
of them having pj categories (or states or classes or labels).
Given a categorical feature, its categories can be :

I on an ordinal scale (eg taste : good, medium, bad)
I on a nominal scale (eg color : blue, brown, green)

Given a categorical feature, its categories can also be :
I symmetric : they have all the same importance
I asymmetric : some of them have more importance than others

We assume that the data points are represented in the space spanned
by {0, 1}p with p =

∑q
j=1 pj .

Each dimension of {0, 1}p corresponds to a state of a categorical
variable and 0 and 1 respectively means the absence xor the presence
of the latter
Ordinal scales will be treated similarly as nominal scales
If a category is not important than its dimension is removed
The data table X is such that xi is a binary vector we thus talk about
binary data

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 46



Different types of data and different types of proximity measures Discrete variables and binary data

Introduction
The data points are described by a set of q categorical variables each
of them having pj categories (or states or classes or labels).
Given a categorical feature, its categories can be :

I on an ordinal scale (eg taste : good, medium, bad)
I on a nominal scale (eg color : blue, brown, green)

Given a categorical feature, its categories can also be :
I symmetric : they have all the same importance
I asymmetric : some of them have more importance than others

We assume that the data points are represented in the space spanned
by {0, 1}p with p =

∑q
j=1 pj .

Each dimension of {0, 1}p corresponds to a state of a categorical
variable and 0 and 1 respectively means the absence xor the presence
of the latter
Ordinal scales will be treated similarly as nominal scales
If a category is not important than its dimension is removed
The data table X is such that xi is a binary vector we thus talk about
binary data

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 46

Different types of data and different types of proximity measures Discrete variables and binary data

Introduction
The data points are described by a set of q categorical variables each
of them having pj categories (or states or classes or labels).
Given a categorical feature, its categories can be :

I on an ordinal scale (eg taste : good, medium, bad)
I on a nominal scale (eg color : blue, brown, green)

Given a categorical feature, its categories can also be :
I symmetric : they have all the same importance
I asymmetric : some of them have more importance than others

We assume that the data points are represented in the space spanned
by {0, 1}p with p =

∑q
j=1 pj .

Each dimension of {0, 1}p corresponds to a state of a categorical
variable and 0 and 1 respectively means the absence xor the presence
of the latter

Ordinal scales will be treated similarly as nominal scales
If a category is not important than its dimension is removed
The data table X is such that xi is a binary vector we thus talk about
binary data

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 46

Different types of data and different types of proximity measures Discrete variables and binary data

Introduction
The data points are described by a set of q categorical variables each
of them having pj categories (or states or classes or labels).
Given a categorical feature, its categories can be :

I on an ordinal scale (eg taste : good, medium, bad)
I on a nominal scale (eg color : blue, brown, green)

Given a categorical feature, its categories can also be :
I symmetric : they have all the same importance
I asymmetric : some of them have more importance than others

We assume that the data points are represented in the space spanned
by {0, 1}p with p =

∑q
j=1 pj .

Each dimension of {0, 1}p corresponds to a state of a categorical
variable and 0 and 1 respectively means the absence xor the presence
of the latter
Ordinal scales will be treated similarly as nominal scales

If a category is not important than its dimension is removed
The data table X is such that xi is a binary vector we thus talk about
binary data

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 46

Different types of data and different types of proximity measures Discrete variables and binary data

Introduction
The data points are described by a set of q categorical variables each
of them having pj categories (or states or classes or labels).
Given a categorical feature, its categories can be :

I on an ordinal scale (eg taste : good, medium, bad)
I on a nominal scale (eg color : blue, brown, green)

Given a categorical feature, its categories can also be :
I symmetric : they have all the same importance
I asymmetric : some of them have more importance than others

We assume that the data points are represented in the space spanned
by {0, 1}p with p =

∑q
j=1 pj .

Each dimension of {0, 1}p corresponds to a state of a categorical
variable and 0 and 1 respectively means the absence xor the presence
of the latter
Ordinal scales will be treated similarly as nominal scales
If a category is not important than its dimension is removed

The data table X is such that xi is a binary vector we thus talk about
binary data

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 46



Different types of data and different types of proximity measures Discrete variables and binary data

Introduction
The data points are described by a set of q categorical variables each
of them having pj categories (or states or classes or labels).
Given a categorical feature, its categories can be :

I on an ordinal scale (eg taste : good, medium, bad)
I on a nominal scale (eg color : blue, brown, green)

Given a categorical feature, its categories can also be :
I symmetric : they have all the same importance
I asymmetric : some of them have more importance than others

We assume that the data points are represented in the space spanned
by {0, 1}p with p =

∑q
j=1 pj .

Each dimension of {0, 1}p corresponds to a state of a categorical
variable and 0 and 1 respectively means the absence xor the presence
of the latter
Ordinal scales will be treated similarly as nominal scales
If a category is not important than its dimension is removed
The data table X is such that xi is a binary vector we thus talk about
binary data

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 46
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Example

> install.packages("FactoMineR")

> library(FactoMineR)

> data(poison.text)

> poison.bin=poison.text[,-3]

> print(poison.bin)

Sick Sex

Samantha sick F

Sarah healthy F

Barbara sick F

Acha healthy F

Zacharias sick M

Dalen sick M

...

> poison.temp=poison.text[,-3]

> poison.bin=matrix(0,nrow=nrow(poison.temp),ncol=2*ncol(poison.temp))

> poison.bin[,1]=as.vector(poison.temp[,1]=="sick")

> poison.bin[,2]=as.vector(poison.temp[,1]=="healthy")

> poison.bin[,3]=as.vector(poison.temp[,2]=="M")

> poison.bin[,4]=as.vector(poison.temp[,2]=="F")

> print(poison.bin)

[,1] [,2] [,3] [,4]

[1,] 1 0 0 1

[2,] 0 1 0 1

[3,] 1 0 0 1

[4,] 0 1 0 1

[5,] 1 0 1 0

[6,] 1 0 1 0

...
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Another example : text data

> poison.temp=data.frame(name=rownames(poison.text),textual=poison.text[,3])

> print(poison.temp)

name textual

1 Samantha Nausea Abdominals Fever Diarrhea Potato Fish Mayo Courgette Cheese Icecream

2 Sarah Potato Fish Mayo Courgette Icecream

3 Barbara Vomitting Abdominals Fever Diarrhea Potato Fish Mayo Courgette Cheese Icecream

4 Acha Potato Fish Courgette Cheese Icecream

5 Zacharias Vomitting Abdominals Fever Diarrhea Potato Fish Mayo Courgette Cheese Icecream

6 Dalen Abdominals Fever Diarrhea Potato Mayo Courgette Cheese Icecream

...

> poison.text.bin=textual(tab=poison.temp,num.text=2,contingence.by=c(1))

> print(poison.text.bin)

$cont.table

abdominals cheese courgette diarrhea fever fish icecream mayo nausea potato vomitting

Acha 0 1 1 0 0 1 1 0 0 1 0

Adela 1 1 1 1 1 1 0 1 0 1 0

Alexandra 0 0 0 0 0 1 1 1 0 1 0

Alison 0 0 1 0 0 1 0 0 0 1 0

Alvis 1 0 1 1 1 1 1 1 0 1 1

Andre 0 1 1 1 1 1 1 1 0 1 1

...
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Preliminaries

Given two binary vectors x, y in {0, 1}p, we can introduce the following
(2× 2) contingency table :

yj Total
1 0

xj
1 a b a + b
0 c d c + d

Total a + c b + d a + b + c + d

where :

a =
∑p

j=1 xjyj = Nb. of shared labels

b =
∑p

j=1 xj(1− yj) = Nb. of labels x has that y hasn’t

c =
∑p

j=1(1− xj)yj = Nb. of labels y has that x hasn’t

d =
∑p

j=1(1− xj)(1− yj) = Nb. of labels that neither x nor y has
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Some classic similarity measures (cont’d)

Jaccard : Sjaccard(x, y) = a
a+b+c ∈ [0, 1]

Dice : Sdice(x, y) = 2a
2a+b+c ∈ [0, 1]

Ochiai : Sochiai (x, y) = a√
(a+b)(a+c)

∈ [0, 1]

Kulczynski : Skulczynski (x, y) = 1
2

(
a

a+b + a
a+c

)
∈ [0, 1]

Sokal-Michener : Ssoc−mich(x, y) = a+d
a+b+c+d ∈ [0, 1]

Rogers-Tanimoto : Srog−tan(x, y) = a+d
a+2(b+c)+d ∈ [0, 1]

Phi : Sphi (x, y) = ad−bc√
(a+b)(c+d)(a+c)(b+d)

∈ [−1, 1]
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Example

X =

(
x 1 1 1 1 0 1 0
y 1 0 1 1 1 0 0

)

yj Total
1 0

xj
1 3 2 5
0 1 1 2

Total 4 3 7

Sjaccard(x, y) = 1
2

Sdice(x, y) = 2
3

Sochiai (x, y) = 3√
20

Skulczynski (x, y) = 1
2

(
3
5 + 3

4

)

Ssok−mich(x, y) = 4
7

Srog−tan(x, y) = 4
10

Sphi (x, y) = 1√
120
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Different types of data and different types of proximity measures Discrete variables and binary data

Two families of similarity measures for binary data
We can distinguish :

“symmetric” measure : d plays a role in the proximity measure

“asymmetric” measure : d does not play any role in the proximity
measure

Following [Gower and Legendre, 1986], we have the two following
families :

Symmetric measures :

S1
α(x, y) =

a + d

a + d + α(b + c)

Asymmetric measures :

S2
α(x, y) =

a

a + α(b + c)
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Two families of similarity measures (cont’d)
Results on the families S1 and S2 (cf [Gower and Legendre, 1986]) :

Theorem.

D1
α = 1− S1

α is metric for α ≥ 1 and
√

D1
α =

√
1− S1

α is metric for
α ≥ 1/3. If α < 1 then D1

α may be non metric and if α < 1/3 then
√

D1
α

may be non metric.

Theorem.

D2
α = 1− S2

α is metric for α ≥ 1 and
√

D2
α =

√
1− S2

α is metric for
α ≥ 1/3. If α < 1 then D2

α may be non metric and if α < 1/3 then
√

D2
α

may be non metric.

Theorem.

The distance matrix of general term
√

D1
α =

√
1− S1

α is euclidean for
α ≥ 1. The distance matrix of general term

√
D2
α =

√
1− S2

α is euclidean
for α ≥ 1/2. Otherwise, D1

α and D2
α may be non euclidean.
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Different types of data and different types of proximity measures Discrete variables and binary data

Example
> install.packages("proxy")

> library(proxy)

> x=c(1,1,1,1,0,1,0)

> y=c(1,0,1,1,1,0,0)

> X=data.frame(rbind(x,y))

> simil(X,method="Jaccard")

x

y 0.5

> simil(X,method="Dice")

x

y 0.6666667

> simil(X,method="Ochiai")

x

y 0.6708204

> simil(X,method="Kulczynski2")

x

y 0.675

> simil(X,method="Sokal/Michener")

x

y 0.5714286

> simil(X,method="Rogers")

x

y 0.4

> simil(X,method="Phi")

x

y 0.0912871

Exercise 5 : Does the Jaccard similarity measure belong to S1
α or S2

α ?
Using R, consider the data poison.text.bin, compute Sjaccard and show
that the distance matrix of general term

√
1− Sjaccard(x, y) is euclidean.
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Different types of data and different types of proximity measures Mixed-typed data

Introduction

The data points are represented by a mix between continuous and
discrete features Rp

Classical examples are individuals described by socio-economic
variables (age, sex, marital status, number of children, incomes, . . . )

In such a case how do we represent the data points in an homogeneous
representation space ? and how do we measure proximities between points ?

Three approaches :

Transform the data of one type to the other type (continuous to
discrete for eg)

Define a similarity measure that can incorporate information from
different types in a homogeneous manner

Define as many proximity measures as types of data, analyze the data
involving one type of features independently from the other ones and
aggregate the different clustering outputs afterwards
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Different types of data and different types of proximity measures Mixed-typed data

Data transformation

We suppose that there is a set of continuous features and a set of discrete
features. There are two approaches :

Transform each continuous variable into a discrete one : discretization
techniques (see for eg [Dougherty et al., 1995, Zighed et al., 1998])

Transform each discrete feature into a continuous one : quantization
techniques (CA for eg)

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 56

Different types of data and different types of proximity measures Mixed-typed data

Data transformation

We suppose that there is a set of continuous features and a set of discrete
features. There are two approaches :

Transform each continuous variable into a discrete one : discretization
techniques (see for eg [Dougherty et al., 1995, Zighed et al., 1998])

Transform each discrete feature into a continuous one : quantization
techniques (CA for eg)

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 56



Different types of data and different types of proximity measures Mixed-typed data

Data transformation

We suppose that there is a set of continuous features and a set of discrete
features. There are two approaches :

Transform each continuous variable into a discrete one : discretization
techniques (see for eg [Dougherty et al., 1995, Zighed et al., 1998])

Transform each discrete feature into a continuous one : quantization
techniques (CA for eg)

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 1 2015-2016 / 56

Different types of data and different types of proximity measures Mixed-typed data

A general similarity coefficient

Proposed by [Gower, 1971]. Let x and y be two p-dimensional data points :

Sgower (x, y) =
1∑p

j=1 w(xj , yj)

p∑

j=1

w(xj , yj)S(xj , yj)

If j is continuous : S(xj , yj) = 1− |xj−yj |rj
; and w(xj , yj) = 0 if xj and

yj are missing values, w(xj , yj) = 1 otherwise

If j is binary : S(xj , yj) = 1 if xj = yj , S(xj , yj) = 0 otherwise ; and
w(xj , yj) = 0 if xj and yj are missing values, w(xj , yj) = 1 otherwise
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Consensus clustering

Consensus clustering is a branch of data clustering that focuses on the
following problem :

Given different clusterings of the same data points that correspond to
different views (based on different types of features in our case), how do
we find a consensus clustering ie how do we aggregate those clusterings ?

See for eg [Goder and Filkov, 2008].
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Organization

Outline of today’s lesson :

1 Hierarchical clustering (HC)
Agglomerative hierarchical clustering (AHC)
Divisive hierarchical clustering (DHC)
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Recalling the clustering process

DATABASE
(numerical 
data, texts, 

images, 
networks, …)

FEATURE
MATRIX

NUMERICAL
REPRESENTA

TION

PROXIMITY
MATRIX

CLUSTERING
OUTPUT

CLUSTERING
ASSESSMENT

CLUSTERING
ALGORITHM
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Different types of clustering algorithm

CLUSTERING
ALGORITHM

HARD
CLUSTERING

SOFT
CLUSTERING

HIERARCHI-
-CAL

PARTITIO-
NAL
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Hierarchical clustering (HC)

Hierarchical clustering

{x1} {x2} {x5}{x3} {x4} {x6}

{x1, x2} {x4, x5}

{x1, x2, x3}
{x4, x5, x6}

{x1, x2, x3, x4, x5, x6}
A

G
G

L
O

M
E

R
A

T
IV

E

C
L

U
S

T
E

R
IN

G

D
IV

IS
IV

E

C
L

U
S

T
E

R
IN

G

Two types of hierarchical clustering algorithms :

Agglomerative : “bottom-up”

Divisive : “top-down”
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Hierarchical clustering (HC)

More about dendrograms

Definition. (Dendrogram)

A dendrogram is a binary tree in which each internal node is associated
with a height H satisfying the condition :

H(n) ≤ H(n′)⇔ n ⊂ n′; where n and n′ are two nodes of the binary tree

H(n) is the distance at which the cluster associated to n is created.

Definition. (Dissimilarity measure associated to a dendrogram)

For each pair of data points (x, y), let H(x, y) be the height of the node in
the dendrogram specifying the smallest cluster grouping x and y together.

Property. (Ultrametric property)

H satisfies the following ultrametric property :

∀x, y, z : H(x, y) ≤ max{H(x, z),H(z, y)}
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Hierarchical clustering (HC)

Example

{x1} {x2} {x5}{x3} {x4} {x6}

n2 = {x1, x2} n1 = {x4, x5}

n3 = {x1, x2, x3}
n4 = {x4, x5, x6}

n5 = {x1, x2, x3, x4, x5, x6}3

H

0

H(n1) = 1.70

H(n4) = 2

For example : H(x4, x6) = H(n4) = 2 and
H(x4, x6) ≤ max{H(x4, x5),H(x5, x6)} = max{H(n1),H(n4)} = H(n4)
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Hierarchical clustering (HC)

More about dendrograms (cont’d)

Definition.

More formally, a dendrogram representing a hierarchical clustering of n
data points is represented by a function dend : [0,+∞[→ Cn such that :

dend(h) ⊆ dend(h′) if h ≤ h′

dend(h + δ) = dend(h) for some small δ

The dendrogram of the last example is represented by :

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5}, {x6} if 0 ≤ h < H(n1)
{x1}, {x2}, {x3}, {x4, x5}, {x6} if H(n1) ≤ h < H(n2)
{x1, x2}, {x3}, {x4, x5}, {x6} if H(n2) ≤ h < H(n3)
{x1, x2, x3}, {x4, x5}, {x6} if H(n3) ≤ h < H(n4)
{x1, x2, x3}, {x4, x5, x6} if H(n4) ≤ h < H(n5)
{x1, x2, x3, x4, x5} if H(n5) ≤ h

Comment : Most of HC algorithms are represented by dendrograms but
some are not ultrametrics (there can be “reversals”). In such cases we talk
about tree diagrams and they are more difficult to interpret.
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Outline

1 Hierarchical clustering (HC)
Agglomerative hierarchical clustering (AHC)
Divisive hierarchical clustering (DHC)
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Pseudo-code of AHC

Pseudo-code of agglomerative hierarchical clusterings (AHC) :

1 Input : D
2 Initialize the tree representation with n leaves
3 While not all data points are grouped together do
4 Merge the two closest clusters according to some distance measure
5 Add a parent node in the tree representation accordingly
6 End While
7 Ouput : tree representation

The critical point for AHC algorithms is the distance measure between
clusters.
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Classification of AHC

We can distinguish AHC algorithmes according to the type of distance
measures used. There are two approaches :

Graph methods :
I Single link method
I Complete link method
I Group average method (UPGMA)
I Weighted group average method (WPGMA)

Geometric :
I Ward’s method
I Centroid method
I Median method

In graph based methods, distances between clusters rely on distances
between the data points in the clusters whereas in geometric based
methods, clusters are reprensented by centroids and the distance between
them rely on the distance between the centroids.
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

The Lance-Williams formula

Definition. (Lance-Williams formula)

In AHC algorithms, the Lance-Williams formula
[Lance and Williams, 1967] is a recurrence equation used to calculate the
dissimilarity between a cluster Ck and a cluster formed by merging two
other clusters Cl ∪ Cl ′ (Ck ,Cl ,Cl ′ are 3 clusters belonging to the same
level of the HC) :

DLW (Ck ,Cl ∪ Cl ′) = αlDLW (Ck ,Cl) + αl ′DLW (Ck ,Cl ′)

+βDLW (Cl ,Cl ′)

+γ|DLW (Ck ,Cl)− DLW (Ck ,Cl ′)|

where αl , αl ′ , β, γ are real numbers.

Each aforementioned method is a particular case of the LW formula.
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

AHC methods and the Lance-Williams formula

Algorithm αl αl ′ β γ

Single link 1/2 1/2 0 −1/2

Complete link 1/2 1/2 0 1/2

UPGMA |Cl |
|Cl |+|Cl′ |

|Cl′ |
|Cl |+|Cl′ | 0 0

WPGMA 1/2 1/2 0 0

Ward |Cl |+|Ck |
|Cl |+|Cl′ |+|Ck |

|Cl′ |+|Ck |
|Cl |+|Cl′ |+|Ck | −

|Ck |
|Cl |+|Cl′ |+|Ck | 0

Centroid |Cl |
|Cl |+|Cl′ |

|Cl′ |
|Cl |+|Cl′ | − |Cl ||Cl′ |

(|Cl |+|Cl′ |)2 0

Median 1/2 1/2 −1/4 0
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Ultrametric property and the Lance-Williams formula

Definition.

The distances DLW (Ck ,Cl ∪ Cl ′) are said to increase monotonically if
DLW (Cl ,Cl ′) ≤ DLW (Ck ,Cl ∪ Cl ′) at each level of the hierarchy.

Property.

If an algorithm produces a monotonic hierarchy then it induces a distance
which satisfies the ultrametric property.

Property.

Using AHC with the LW formula, the hierarchical clustering strategy is
monotonic iff :
(γ ≥ −min{αl , αl ′}) and (αl + αl ′ ≥ 0) and (αl + αl ′ + β ≥ 1)

Exercise 6 : Which AHC methods are not monotonic and can induce a
distance that does not satisfy the ultrametric property ?
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Single link method

One of the simplest AHC method proposed by Sneath in 1957

Also known as the nearest neighbor method, since it employs the
nearest neighbor to measure the dissimilarity between two clusters

It is invariant under monotone transformations of the data

According to the LW formula we have :

Dsl(Ck ,Cl ∪ Cl ′) =
1

2
Dsl(Ck ,Cl) +

1

2
Dsl(Ck ,Cl ′)

−1

2
|Dsl(Ck ,Cl)− Dsl(Ck ,Cl ′)|

= min{Dsl(Ck ,Cl),Dsl(Ck ,Cl ′)}
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Single link method (cont’d)

Suppose that Ck and Ck ′ are two nonempty and nonoverlapping clusters
and D is the distance function by which the dissimilarity matrix is
computed then the Dsl distance between Ck and Ck ′ can be defined as
follows :

Dsl(Ck ,Ck ′) = min
x∈Ck ,y∈Ck′

{D(x, y)}

x1

x2

x4

x5

x3

x6Dsl(Ck,Ck′)
Ck Ck ′
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Example

We consider 5 data points in R2 :

x1 = (1, 2)

x2 = (1, 2.5)

x3 = (3, 1)

x4 = (4, 0.5)

x5 = (4, 2)

We consider the euclidean distance
between data points.

x1

x2

x4

x5

x3

O 1 42 3

1

4

2

3
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Example (cont’d)

The starting distance matrix D is the euclidean distance matrix between
points :

D = Deucl = Dsl =




x1 x2 x3 x4 x5
x1 0 0.5 2.24 3.35 3
x2 0.5 0 2.5 3.61 3.04
x3 2.24 2.5 0 1.12 1.41
x4 3.35 3.61 1.12 0 1.5
x5 3 3.04 1.41 1.5 0




2 dend(h) =
{
{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h

4 Merge x1 and x2

dend(h) =

{
{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h
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Example (cont’d)

With the single link method, the distance matrix Dsl becomes :

Dsl({x1, x2}, x3) = min{Dsl(x1, x3),Dsl(x2, x3)} = 2.24

Dsl({x1, x2}, x4) = min{Dsl(x1, x4),Dsl(x2, x4)} = 3.35

Dsl({x1, x2}, x5) = min{Dsl(x1, x5),Dsl(x2, x5)} = 3

Dsl =




{x1, x2} x3 x4 x5
{x1, x2} 0 2.24 3.35 3
x3 2.24 0 1.12 1.41
x4 3.35 1.12 0 1.5
x5 3 1.41 1.5 0




4 Merge x3 and x4

dend(h) =




{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h
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Example (cont’d)
With the single link method, the distance matrix Dsl becomes :

Dsl({x3, x4}, {x1, x2}) =
min{Dsl(x3, x1),Dsl(x3, x2),Dsl(x4, x1),Dsl(x4, x2)} =
min{Dsl(x3, {x1, x2}),Dsl(x4, {x1, x2})} = 2.24

Dsl({x3, x4}, x5) = min{Dsl(x3, x5),Dsl(x4, x5)} = 1.41

Dsl =




{x1, x2} {x3, x4} x5
{x1, x2} 0 2.24 3
{x3, x4} 2.24 0 1.41
x5 3 1.41 0




4 Merge {x3, x4} and x5

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h < 1.41
{x1, x2}, {x3, x4, x5} if 1.41 ≤ h
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min{Dsl(x3, x1),Dsl(x3, x2),Dsl(x4, x1),Dsl(x4, x2)} =
min{Dsl(x3, {x1, x2}),Dsl(x4, {x1, x2})} = 2.24

Dsl({x3, x4}, x5) = min{Dsl(x3, x5),Dsl(x4, x5)} = 1.41

Dsl =




{x1, x2} {x3, x4} x5
{x1, x2} 0 2.24 3
{x3, x4} 2.24 0 1.41
x5 3 1.41 0




4 Merge {x3, x4} and x5

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h < 1.41
{x1, x2}, {x3, x4, x5} if 1.41 ≤ h
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example (cont’d)

With the single link method, the distance matrix Dsl becomes :

Dsl({x3, x4, x5}, {x1, x2}) =
min{Dsl({x3, x4}, {x1, x2}),Dsl(x5, {x1, x2})} = 2.24

Dsl =

( {x1, x2} {x3, x4, x5}
{x1, x2} 0 2.24
{x3, x4, x5} 2.24 0

)

4 Merge {x3, x4, x5} and {x1, x2}

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h < 1.41
{x1, x2}, {x3, x4, x5} if 1.41 ≤ h < 2.24
{x1, x2, x3, x4, x5} if 2.24 ≤ h
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Example (cont’d)
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Example (cont’d)

With the single link method, the distance matrix Dsl becomes :

Dsl({x3, x4, x5}, {x1, x2}) =
min{Dsl({x3, x4}, {x1, x2}),Dsl(x5, {x1, x2})} = 2.24

Dsl =

( {x1, x2} {x3, x4, x5}
{x1, x2} 0 2.24
{x3, x4, x5} 2.24 0

)

4 Merge {x3, x4, x5} and {x1, x2}

dend(h) =
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


{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example (cont’d)

The dendrogram :

{x1} {x2} {x5}{x3} {x4}

{x1, x2}
{x3, x4}

{x3, x4, x5}

{x1, x2, x3, x4, x5}

0

3

0.5

1.12
1.41

2.24

H
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Complete link method

Introduced by McQuitty in 1960

Unlike single link methods, it employs the farthest neighbor to
measure the dissimilarity between two clusters

It is also invariant under monotone transformations of the data

Following the LW formula this method uses the updating rule :

Dsl(Ck ,Cl ∪ Cl ′) =
1

2
Dsl(Ck ,Cl) +

1

2
Dsl(Ck ,Cl ′)

+
1

2
|Dsl(Ck ,Cl)− Dsl(Ck ,Cl ′)|

= max{Dsl(Ck ,Cl),Dsl(Ck ,Cl ′)}
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Complete link method (cont’d)

Suppose that Ck and Ck ′ are two nonempty and nonoverlapping clusters
and D the distance function by which the dissimilarity matrix is computed,
then the distance between Ck and Ck ′ can also be defined as follows :

Dcl(Ck ,Ck ′) = max
x∈Ck ,y∈Ck′

{D(x, y)}

x1

x2

x4

x5

x3

x6

Dcl(Ck,Ck′)

Ck Ck ′

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 24



Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Complete link method (cont’d)

Suppose that Ck and Ck ′ are two nonempty and nonoverlapping clusters
and D the distance function by which the dissimilarity matrix is computed,
then the distance between Ck and Ck ′ can also be defined as follows :

Dcl(Ck ,Ck ′) = max
x∈Ck ,y∈Ck′

{D(x, y)}

x1
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example

We consider the same example as previously. The starting distance matrix
D is again the euclidean distance matrix between points :

D = Deucl = Dcl =




x1 x2 x3 x4 x5
x1 0 0.5 2.24 3.35 3
x2 0.5 0 2.5 3.61 3.04
x3 2.24 2.5 0 1.12 1.41
x4 3.35 3.61 1.12 0 1.5
x5 3 3.04 1.41 1.5 0




2 dend(h) =
{
{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h

4 Merge x1 and x2

dend(h) =

{
{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h
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Example

We consider the same example as previously. The starting distance matrix
D is again the euclidean distance matrix between points :

D = Deucl = Dcl =




x1 x2 x3 x4 x5
x1 0 0.5 2.24 3.35 3
x2 0.5 0 2.5 3.61 3.04
x3 2.24 2.5 0 1.12 1.41
x4 3.35 3.61 1.12 0 1.5
x5 3 3.04 1.41 1.5 0




2 dend(h) =
{
{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h

4 Merge x1 and x2

dend(h) =

{
{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 25

Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example (cont’d)

With the complete link method, the distance matrix Dcl becomes :

Dcl({x1, x2}, x3) = max{Dcl(x1, x3),Dcl(x2, x3)} = 2.5

Dcl({x1, x2}, x4) = max{Dcl(x1, x4),Dcl(x2, x4)} = 3.61

Dcl({x1, x2}, x5) = max{Dcl(x1, x5),Dcl(x2, x5)} = 3.04

Dcl =




{x1, x2} x3 x4 x5
{x1, x2} 0 2.5 3.61 3.04
x3 2.5 0 1.12 1.41
x4 3.61 1.12 0 1.5
x5 3.04 1.41 1.5 0




4 Merge x3 and x4

dend(h) =




{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h
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Example (cont’d)

With the complete link method, the distance matrix Dcl becomes :

Dcl({x1, x2}, x3) = max{Dcl(x1, x3),Dcl(x2, x3)} = 2.5

Dcl({x1, x2}, x4) = max{Dcl(x1, x4),Dcl(x2, x4)} = 3.61

Dcl({x1, x2}, x5) = max{Dcl(x1, x5),Dcl(x2, x5)} = 3.04

Dcl =




{x1, x2} x3 x4 x5
{x1, x2} 0 2.5 3.61 3.04
x3 2.5 0 1.12 1.41
x4 3.61 1.12 0 1.5
x5 3.04 1.41 1.5 0




4 Merge x3 and x4

dend(h) =




{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h
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Example (cont’d)

With the complete link method, the distance matrix Dcl becomes :

Dcl({x1, x2}, x3) = max{Dcl(x1, x3),Dcl(x2, x3)} = 2.5

Dcl({x1, x2}, x4) = max{Dcl(x1, x4),Dcl(x2, x4)} = 3.61

Dcl({x1, x2}, x5) = max{Dcl(x1, x5),Dcl(x2, x5)} = 3.04

Dcl =



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Example (cont’d)
With the complete link method, the distance matrix Dcl becomes :

Dcl({x3, x4}, {x1, x2}) =
max{Dcl(x3, x1),Dcl(x3, x2),Dcl(x4, x1),Dcl(x4, x2)} =
max{Dcl(x3, {x1, x2}),Dcl(x4, {x1, x2})} = 3.61

Dcl({x3, x4}, x5) = max{Dcl(x3, x5),Dcl(x4, x5)} = 1.5

Dcl =




{x1, x2} {x3, x4} x5
{x1, x2} 0 3.61 3.04
{x3, x4} 3.61 0 1.5
x5 3.04 1.5 0




4 Merge {x3, x4} and x5

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
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{x1, x2}, {x3, x4, x5} if 1.5 ≤ h
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Example (cont’d)
With the complete link method, the distance matrix Dcl becomes :
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max{Dcl(x3, {x1, x2}),Dcl(x4, {x1, x2})} = 3.61

Dcl({x3, x4}, x5) = max{Dcl(x3, x5),Dcl(x4, x5)} = 1.5

Dcl =




{x1, x2} {x3, x4} x5
{x1, x2} 0 3.61 3.04
{x3, x4} 3.61 0 1.5
x5 3.04 1.5 0




4 Merge {x3, x4} and x5

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h < 1.5
{x1, x2}, {x3, x4, x5} if 1.5 ≤ h
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Example (cont’d)
With the complete link method, the distance matrix Dcl becomes :

Dcl({x3, x4}, {x1, x2}) =
max{Dcl(x3, x1),Dcl(x3, x2),Dcl(x4, x1),Dcl(x4, x2)} =
max{Dcl(x3, {x1, x2}),Dcl(x4, {x1, x2})} = 3.61

Dcl({x3, x4}, x5) = max{Dcl(x3, x5),Dcl(x4, x5)} = 1.5

Dcl =




{x1, x2} {x3, x4} x5
{x1, x2} 0 3.61 3.04
{x3, x4} 3.61 0 1.5
x5 3.04 1.5 0




4 Merge {x3, x4} and x5

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h < 1.5
{x1, x2}, {x3, x4, x5} if 1.5 ≤ h
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example (cont’d)

With the complete link method, the distance matrix Dcl becomes :

Dcl({x3, x4, x5}, {x1, x2}) =
max{Dcl({x3, x4}, {x1, x2}),Dcl(x5, {x1, x2})} = 3.61

Dcl =

( {x1, x2} {x3, x4, x5}
{x1, x2} 0 3.61
{x3, x4, x5} 3.61 0

)

4 Merge {x3, x4, x5} and {x1, x2}

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h < 1.5
{x1, x2}, {x3, x4, x5} if 1.5 ≤ h < 3.61
{x1, x2, x3, x4, x5} if 3.61 ≤ h
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Example (cont’d)

With the complete link method, the distance matrix Dcl becomes :

Dcl({x3, x4, x5}, {x1, x2}) =
max{Dcl({x3, x4}, {x1, x2}),Dcl(x5, {x1, x2})} = 3.61

Dcl =

( {x1, x2} {x3, x4, x5}
{x1, x2} 0 3.61
{x3, x4, x5} 3.61 0

)

4 Merge {x3, x4, x5} and {x1, x2}

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h < 1.5
{x1, x2}, {x3, x4, x5} if 1.5 ≤ h < 3.61
{x1, x2, x3, x4, x5} if 3.61 ≤ h
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Example (cont’d)

With the complete link method, the distance matrix Dcl becomes :

Dcl({x3, x4, x5}, {x1, x2}) =
max{Dcl({x3, x4}, {x1, x2}),Dcl(x5, {x1, x2})} = 3.61

Dcl =

( {x1, x2} {x3, x4, x5}
{x1, x2} 0 3.61
{x3, x4, x5} 3.61 0

)

4 Merge {x3, x4, x5} and {x1, x2}

dend(h) =
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Example (cont’d)

The dendrogram :
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Group average method

Proposed by McQuitty in 1967

Also referred as UPGMA for “Unweighted Pair Group Method using
Arithmetic mean”

According to the LW formula we have :

Dupgma(Ck ,Cl ∪ Cl ′) =
|Cl |

|Cl |+ |Cl ′ |
Dupgma(Ck ,Cl)

+
|Cl ′ |

|Cl |+ |Cl ′ |
Dupgma(Ck ,Cl ′)
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Group average method (cont’d)

Suppose that Ck and Ck ′ are two nonempty and nonoverlapping clusters
and D the distance function by which the dissimilarity matrix is computed,
then the distance between Ck and Ck ′ is defined as follows :

Dupgma(Ck ,Ck ′) =
1

|Ck ||Ck ′ |
∑

x∈Ck ,y∈Ck′

D(x, y)

x1

x2

x4

x5

x3

x6

Ck Ck ′
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Weighted group average method

Proposed by McQuitty in 1966

Also referred as WPGMA for “Weighted Pair Group Method using
Arithmetic mean”

According to the LW formula we have :

Dwpgma(Ck ,Cl ∪ Cl ′) =
1

2
Dwpgma(Ck ,Cl) +

1

2
Dwpgma(Ck ,Cl ′)

Unlike UPGMA, WPGMA will give more weights to small clusters
when updating the distances after merging two clusters.

Exercise 7 : Apply the WPGMA method to the previous example.
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Ward’s method

Proposed by Ward in 1963

Based on the loss of information quantified in terms of an error sum
of squares criterion (ESS). Given a group of data points Ck the ESS
associated to this cluster is :

ESS(Ck) =
∑

x∈Ck

‖x− µ(Ck)‖2

=
∑

x∈Ck

(x− µ(Ck))>(x− µ(Ck))

=
∑

x∈Ck

x>x− |Ck |µ(Ck)>µ(Ck)

where µ(Ck) = 1
|Ck |
∑

x∈Ck
x, is the mean vector of cluster Ck

At each step of Ward’s method, the union of every possible pair of
clusters is considered and we merge the one that leads to the
minimum ESS
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Ward’s method (cont’d)
If the squared euclidean distance is used (D(x, y) = D2

eucl(x, y)) then
the dissimilarity matrix can be updated as follows :

Dward(Ck ,Cl ∪ Cl ′) =
|Ck |+ |Cl |

|Ck |+ |Cl |+ |Cl ′ |
Dward(Ck ,Cl)

+
|Ck |+ |Cl ′ |

|Ck |+ |Cl |+ |Cl ′ |
Dward(Ck ,Cl ′)

− |Ck |
|Ck |+ |Cl |+ |Cl ′ |

Dward(Cl ,Cl ′)

Sketch of proof : Let denote ∆ESS(Ck ,Cl ∪ Cl ′) the increase of
ESS when merging Ck with Ck ′ = Cl ∪ Cl ′ .
If D(x, y) = D2

eucl(x, y) = ‖x− y‖2 then we can show that :

∆ESS(Ck ,Cl ∪ Cl ′) =
1

2
Dward(Ck ,Cl ∪ Cl ′)

Thus, picking the smallest Dward(Ck ,Cl ∪ Cl ′) at each iteration leads
to the merging of clusters that minimizes the loss of information
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example

We consider the same example as previously. The starting distance matrix
D is here the squared euclidean distance matrix between points :

D = D2
eucl = Dward =




x1 x2 x3 x4 x5
x1 0 0.25 5 11.25 9
x2 0.25 0 6.25 13 9.35
x3 5 6.25 0 1.25 2
x4 11.25 13 1.25 0 2.25
x5 9 9.25 2 2.25 0




2 dend(h) =
{
{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h

4 Merge x1 and x2

dend(h) =

{
{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.25
{x1, x2}, {x3}, {x4}, {x5} if 0.25 ≤ h
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example (cont’d)
Dward({x1, x2}, x3) =
2
3 (Dward(x1, x3) + Dward(x2, x3))− 1

3 Dward(x1, x2) = 7.42
Dward({x1, x2}, x4) =
2
3 (Dward(x1, x4) + Dward(x2, x4))− 1

3 Dward(x1, x2) = 16.08
Dward({x1, x2}, x5) =
2
3 (Dward(x1, x5) + Dward(x2, x5))− 1

3 Dward(x1, x2) = 12.08

Dward =




{x1, x2} x3 x4 x5
{x1, x2} 0 7.42 16.08 12.08
x3 7.42 0 1.25 2
x4 16.08 1.25 0 2.25
x5 12.08 2 2.25 0




4 Merge x3 and x4

dend(h) =




{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.25
{x1, x2}, {x3}, {x4}, {x5} if 0.25 ≤ h < 1.25
{x1, x2}, {x3, x4}, {x5} if 1.25 ≤ h
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Example (cont’d)

Dward({x3, x4}, {x1, x2}) = 3
4 (Dward(x3, {x1, x2}) +

Dward(x4, {x1, x2}))− 2
4 Dward(x3, x4) = 3

4 (7.42+16.08)− 2
4 (1.25) = 17

Dward({x3, x4}, x5) =
2
3 (Dward(x3, x5) + Dward(x4, x5))− 1

3 Dward(x3, x4) = 2.42

Dward =




{x1, x2} {x3, x4} x5
{x1, x2} 0 17 12.08
{x3, x4} 17 0 2.42
x5 12.08 2.42 0




4 Merge {x3, x4} and x5

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.25
{x1, x2}, {x3}, {x4}, {x5} if 0.25 ≤ h < 1.25
{x1, x2}, {x3, x4}, {x5} if 1.25 ≤ h < 2.42
{x1, x2}, {x3, x4, x5} if 2.42 ≤ h
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Dward({x3, x4}, {x1, x2}) = 3
4 (Dward(x3, {x1, x2}) +

Dward(x4, {x1, x2}))− 2
4 Dward(x3, x4) = 3

4 (7.42+16.08)− 2
4 (1.25) = 17

Dward({x3, x4}, x5) =
2
3 (Dward(x3, x5) + Dward(x4, x5))− 1

3 Dward(x3, x4) = 2.42

Dward =




{x1, x2} {x3, x4} x5
{x1, x2} 0 17 12.08
{x3, x4} 17 0 2.42
x5 12.08 2.42 0




4 Merge {x3, x4} and x5

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.25
{x1, x2}, {x3}, {x4}, {x5} if 0.25 ≤ h < 1.25
{x1, x2}, {x3, x4}, {x5} if 1.25 ≤ h < 2.42
{x1, x2}, {x3, x4, x5} if 2.42 ≤ h

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 37

Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example (cont’d)
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example (cont’d)

Dward({x3, x4, x5}, {x1, x2}) = 4
5 Dward({x3, x4}, {x1, x2}) +

3
5 Dward(x5, {x1, x2}))− 2

5 Dward({x3, x4}, x5) =
4
5 (17) + 3

5 (12.08)− 2
5 (2.42) = 19.88

Dward =

( {x1, x2} {x3, x4, x5}
{x1, x2} 0 19.88
{x3, x4, x5} 19.88 0

)

4 Merge {x1, x2} and {x3, x4, x5}

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.25
{x1, x2}, {x3}, {x4}, {x5} if 0.25 ≤ h < 1.25
{x1, x2}, {x3, x4}, {x5} if 1.25 ≤ h < 2.42
{x1, x2}, {x3, x4, x5} if 2.42 ≤ h < 19.88
{x1, x2, x3, x4, x5} if 19.88 ≤ h
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Example (cont’d)

Dward({x3, x4, x5}, {x1, x2}) = 4
5 Dward({x3, x4}, {x1, x2}) +

3
5 Dward(x5, {x1, x2}))− 2

5 Dward({x3, x4}, x5) =
4
5 (17) + 3

5 (12.08)− 2
5 (2.42) = 19.88
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{x3, x4, x5} 19.88 0
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{x1, x2}, {x3}, {x4}, {x5} if 0.25 ≤ h < 1.25
{x1, x2}, {x3, x4}, {x5} if 1.25 ≤ h < 2.42
{x1, x2}, {x3, x4, x5} if 2.42 ≤ h < 19.88
{x1, x2, x3, x4, x5} if 19.88 ≤ h
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Example (cont’d)
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Example (cont’d)

The dendrogram :

{x1} {x2} {x5}{x3} {x4}

{x1, x2}

{x3, x4}

{x3, x4, x5}

{x1, x2, x3, x4, x5}

0
0.25

1.25

2.42

19.88

H

2

1
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The centroid method

Proposed by Gower in 1967

Following the LW formula, this approach is related to the updating
rule below :

Dcent(Ck ,Cl ∪ Cl ′) =
|Cl |

|Cl |+ |Cl ′ |
Dcent(Ck ,Cl)

+
|Cl ′ |

|Cl |+ |Cl ′ |
Dcent(Ck ,Cl ′)

− |Cl ||Cl ′ |
(|Cl |+ |Cl ′ |)2

Dcent(Cl ,Cl ′)

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 40



Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

The centroid method

Proposed by Gower in 1967

Following the LW formula, this approach is related to the updating
rule below :

Dcent(Ck ,Cl ∪ Cl ′) =
|Cl |

|Cl |+ |Cl ′ |
Dcent(Ck ,Cl)

+
|Cl ′ |

|Cl |+ |Cl ′ |
Dcent(Ck ,Cl ′)

− |Cl ||Cl ′ |
(|Cl |+ |Cl ′ |)2

Dcent(Cl ,Cl ′)

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 40

Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

The centroid method (cont’d)

Suppose that Ck and Ck ′ are two nonempty and nonoverlapping
clusters and D is the distance function by which the dissimilarity
matrix is computed then the Dsl distance between Ck and Ck ′ can be
defined as follows :

Dcent(Ck ,Ck ′) =
1

|Ck ||Ck ′ |
∑

x∈Ck ,y∈Ck′

D(x, y)− 1

2|Ck |2
∑

x,y∈Ck

D(x, y)

− 1

2|Ck ′ |2
∑

x,y∈Ck′

D(x, y)

If D(x, y) = D2
eucl(x, y) = ‖x− y‖2 then Dcent(Ck ,Ck ′) is the squared

distance between the centroids of Ck and Ck ′ and we have :

Dcent(Ck ,Ck ′) = D2
eucl(µ(Ck), µ(Ck ′))

Exercise 8 : Show the last relationship.
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example

We consider the same example as previously. We chose as the starting
distance matrix D the euclidean distance matrix between points :

D = Deucl = Dcent =




x1 x2 x3 x4 x5
x1 0 0.5 2.24 3.35 3
x2 0.5 0 2.5 3.61 3.04
x3 2.24 2.5 0 1.12 1.41
x4 3.35 3.61 1.12 0 1.5
x5 3 3.04 1.41 1.5 0




2 dend(h) =
{
{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h

4 Merge x1 and x2

dend(h) =

{
{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example (cont’d)

Dcent({x3, x4}, {x1, x2}) =
1
2 (Dcent(x3, {x1, x2}) + Dcent(x4, {x1, x2}))− 1

4 Dcent(x3, x4) = 2.52

Dcent({x3, x4}, x5) =
1
2 (Dcent(x3, x5) + Dcent(x4, x5))− 1

4 Dcent(x3, x4) = 1.175

Dcent =




{x1, x2} {x3, x4} x5
{x1, x2} 0 2.52 2.895
{x3, x4} 2.52 0 1.175
x5 2.895 1.175 0




4 Merge {x3, x4} with x5

dend(h) =





{x1}, {x2}, {x3}, {x4}, {x5} if 0 ≤ h < 0.5
{x1, x2}, {x3}, {x4}, {x5} if 0.5 ≤ h < 1.12
{x1, x2}, {x3, x4}, {x5} if 1.12 ≤ h < 1.175
{x1, x2}, {x3, x4, x5} if 1.175 ≤ h
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Example (cont’d)

Dcent({x3, x4, x5}, {x1, x2}) = 2
3 Dcent({x3, x4}, {x1, x2}) +

1
3 Dcent(x5, {x1, x2})− 2

9 Dcent({x3, x4}, x5) = 2.38

Dcent =

( {x1, x2} {x3, x4, x5}
{x1, x2} 0 2.38
{x3, x4, x5} 2.38 0

)
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Example (cont’d)

The dendrogram :

{x1} {x2} {x5}{x3} {x4}

{x1, x2}
{x3, x4}

{x3, x4, x5}

{x1, x2, x3, x4, x5}

0

0.5

1.12
1.175

2.38

H
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The median method

Proposed by Gower in 1967

Following the LW formula, this approach is related to the updating
rule below :

Dmed(Ck ,Cl ∪ Cl ′) =
1

2
Dmed(Ck ,Cl) +

1

2
Dmed(Ck ,Cl ′)

−1

4
Dmed(Cl ,Cl ′)

In the centroid method, if the size of the clusters to be merged are
different, then the centroid of the new group will be close to that of
the larger cluster. In the median method, the centroid of the new
group is independent of the size of the groups.

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 46

Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

The median method

Proposed by Gower in 1967

Following the LW formula, this approach is related to the updating
rule below :

Dmed(Ck ,Cl ∪ Cl ′) =
1

2
Dmed(Ck ,Cl) +

1

2
Dmed(Ck ,Cl ′)

−1

4
Dmed(Cl ,Cl ′)

In the centroid method, if the size of the clusters to be merged are
different, then the centroid of the new group will be close to that of
the larger cluster. In the median method, the centroid of the new
group is independent of the size of the groups.

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 46

Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

The median method

Proposed by Gower in 1967

Following the LW formula, this approach is related to the updating
rule below :

Dmed(Ck ,Cl ∪ Cl ′) =
1

2
Dmed(Ck ,Cl) +

1

2
Dmed(Ck ,Cl ′)

−1

4
Dmed(Cl ,Cl ′)

In the centroid method, if the size of the clusters to be merged are
different, then the centroid of the new group will be close to that of
the larger cluster. In the median method, the centroid of the new
group is independent of the size of the groups.

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 46



Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Some comments on the different approaches

Single link : Tends to produce unbalanced clusters and clusters with a
“chaining” phenomenon, especially in large data sets. Does not take
account of cluster structure.

Complete link : Tends to find compact clusters with equal diameters
(maximum distance between objects). Does not take account of
cluster structure.

UPGMA : Tends to join clusters with small variances. Intermediate
between single and complete link methods. Takes account of cluster
structure. Relatively robust.

WPGMA : As for UPGMA, but points in small clusters weighted more
highly than points in large clusters (useful if cluster sizes are likely to
be uneven).
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Some comments on the different approaches (cont’d)

Ward method : Assumes points can be represented in an Euclidean
space (for geometrical interpretation). Tends to find same-size,
spherical clusters. Sensitive to outliers.

Centroid : Assumes points can be represented in an Euclidean space
(for geometrical interpretation). The most numerous of the two
groups clustered dominates the merged cluster. May not satisfy the
ultrametric property.

Median : Assumes points can be represented in Euclidean space for
geometrical interpretation. New group is intermediate in position
between merged groups. May not satisfy the ultrametric property.
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Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Pros and cons of AHC

Pros :

AHC are simple and versatile since they can be applied to any kinds
of objects providing that we have a distance matrix

There are many approaches and AHC can cope with clusters having
non spherical shapes (using the single link method for example)

The classification scheme is a dendrogram ie a set of nested
partitions, which could be more informative than a flat partition.
Furthermore, depending on the number of clusters we want, we can
cut the tree diagram accordingly and have a flat partition

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 49



Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Pros and cons of AHC

Pros :

AHC are simple and versatile since they can be applied to any kinds
of objects providing that we have a distance matrix

There are many approaches and AHC can cope with clusters having
non spherical shapes (using the single link method for example)

The classification scheme is a dendrogram ie a set of nested
partitions, which could be more informative than a flat partition.
Furthermore, depending on the number of clusters we want, we can
cut the tree diagram accordingly and have a flat partition

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 49

Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Pros and cons of AHC

Pros :

AHC are simple and versatile since they can be applied to any kinds
of objects providing that we have a distance matrix

There are many approaches and AHC can cope with clusters having
non spherical shapes (using the single link method for example)

The classification scheme is a dendrogram ie a set of nested
partitions, which could be more informative than a flat partition.
Furthermore, depending on the number of clusters we want, we can
cut the tree diagram accordingly and have a flat partition

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 49

Hierarchical clustering (HC) Agglomerative hierarchical clustering (AHC)

Pros and cons of AHC (cont’d)
Cons :

In AHC once two objects have been grouped together, we cannot
ungroup them later on during the course of the algorithm

Time complexity : since at each iteration, we need to find the lowest
distance among n(n−1)

2 pairs of data points and since there are n
iterations, the time complexity is O(n3)

Storage complexity : since we need to store the distance matrix, it has
an O(n2) complexity

Because of the complexities, most of AHC algorithms cannot be used
on large datasets

⇒ To overcome those limits some recent HC approaches have been
proposed see for eg [Han et al., 2006, Murtagh and Contreras, 2012,
Xu and Wunsch, 2005]
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Example using R

> X=matrix(c(1,1,3,4,4,2,2.5,1,0.5,2),nrow=5,ncol=2)

> D=dist(X,method="euclidean")

> hc_single=hclust(D,method="single")

> str(as.dendrogram(hc_single))

--[dendrogram w/ 2 branches and 5 members at h = 2.24]

|--[dendrogram w/ 2 branches and 2 members at h = 0.5]

| |--leaf 1

| ‘--leaf 2

‘--[dendrogram w/ 2 branches and 3 members at h = 1.41]

|--leaf 5

‘--[dendrogram w/ 2 branches and 2 members at h = 1.12]

|--leaf 3

‘--leaf 4
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Example using R (cont’d)

> plot(hc_single)
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Example using R (cont’d)

> hc_ward=hclust(D^2,method="ward")

> str(as.dendrogram(hc_ward))

--[dendrogram w/ 2 branches and 5 members at h = 19.9]

|--[dendrogram w/ 2 branches and 2 members at h = 0.25]

| |--leaf 1

| ‘--leaf 2

‘--[dendrogram w/ 2 branches and 3 members at h = 2.42]

|--leaf 5

‘--[dendrogram w/ 2 branches and 2 members at h = 1.25]

|--leaf 3

‘--leaf 4

Exercise 9 : Use R and compute the AHC of the previous example with the
median method.
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Example using R (cont’d)

> plot(hc_ward)
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Outline

1 Hierarchical clustering (HC)
Agglomerative hierarchical clustering (AHC)
Divisive hierarchical clustering (DHC)
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Pseudo-code of DHC

Pseudo-code of divisive hierarchical clusterings (DHC) :

1 Input : D
2 Initialize the tree representation with 1 root (all points in 1 cluster)
3 While there are not n leaves do
4 Split a cluster into two according to some criterion
5 Add two child nodes in the tree representation accordingly
6 End While
7 Ouput : tree representation

The critical point for DHC algorithms is the spliting criterion.
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Monothetic vs Polythetic methods

DHC could be computationnaly demanding : there are 2n−1 − 1 possible
subdivisions into two clusters when spliting a cluster of size n. For data
consisting of p binary variables, there are relatively efficient approaches
known as :

monothetic methods : they generally divide a cluster according to the
presence or absence of one of the p variables

Otherwise, there are other techniques known as :

polythetic methods : they divide the data based on the values taken
by all p variables

DHC are less used than AHC. Globally pros and cons about AHC are
valids for DHC. In the sequel, we present Diana a polythetic method.
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Diana

Proposed by MacNaughton-Smith et al. in 1964 and further described
by Kaufman and Rousseeuw in 1990 (the latter researchers developed
the R function of Diana)

Diana stands for DIvisive ANAlysis clustering

At each step, the biggest cluster according to the diameter criterion is
split. Let Ck be a cluster its diameter is defined as follows :

Diam(Ck) = max
x,y∈Ck

D(x, y)

where D is the starting distance matrix between items

The values of the diameter are also used as heights to represent the
hierarchical clustering as a tree diagram

At each step, let Cl and Cl ′ be the clusters divided from Ck ie
Cl ∩ Cl ′ = ∅ and Cl ∪ Cl ′ = Ck

Diana finds Cl and Cl ′ by moving points from Cl to Cl ′ iteratively
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Diana (cont’d)

At the first stage Cl = Ck and Cl ′ = ∅ and the data point x∗ that
maximizes the following criterion is moved from Cl to Cl ′ :

Ddiana(x,Cl \ {x}) =
1

|Cl | − 1

∑

y∈Cl ,y 6=x

D(x, y)

Then we update the two clusters as follows : Cl ← Cl \ {x∗} and
Cl ′ ← Cl ′ ∪ {x∗}

At the following steps, we look at other items to move from Cl to Cl ′

according to the following measure :

Ddiana(x,Cl \ {x})− Ddiana(x,Cl ′) =
1

|Cl |−1

∑
y∈Cl ,y 6=x D(x, y)− 1

|Cl′ |
∑

z∈Cl′
D(x, z)

If x∗ maximizes the previous criterion and if the optimum value is
positive then : Cl ← Cl \ {x∗} and Cl ′ ← Cl ′ ∪ {x∗}. If the optimum
value is negative we stop moving points.

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 59

Hierarchical clustering (HC) Divisive hierarchical clustering (DHC)

Diana (cont’d)

At the first stage Cl = Ck and Cl ′ = ∅ and the data point x∗ that
maximizes the following criterion is moved from Cl to Cl ′ :

Ddiana(x,Cl \ {x}) =
1

|Cl | − 1

∑

y∈Cl ,y 6=x

D(x, y)

Then we update the two clusters as follows : Cl ← Cl \ {x∗} and
Cl ′ ← Cl ′ ∪ {x∗}
At the following steps, we look at other items to move from Cl to Cl ′

according to the following measure :

Ddiana(x,Cl \ {x})− Ddiana(x,Cl ′) =
1

|Cl |−1

∑
y∈Cl ,y 6=x D(x, y)− 1

|Cl′ |
∑

z∈Cl′
D(x, z)

If x∗ maximizes the previous criterion and if the optimum value is
positive then : Cl ← Cl \ {x∗} and Cl ′ ← Cl ′ ∪ {x∗}. If the optimum
value is negative we stop moving points.

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 2 2015-2016 / 59

Hierarchical clustering (HC) Divisive hierarchical clustering (DHC)

Example

Suppose we are given the distance matrix below as an input :




x1 x2 x3 x4 x5 x6 x7
x1 0 10 7 30 29 38 42
x2 10 0 7 23 25 34 36
x3 7 7 0 21 22 31 36
x4 30 23 21 0 7 10 13
x5 29 25 22 7 0 11 17
x6 38 34 31 10 11 0 9
x7 42 36 36 13 17 9 0




2 dend(h) =
{
{x1, x2, x3, x4, x5, x6, x7} if 42 ≤ h

4 Split Ck = {x1, x2, x3, x4, x5, x6, x7}
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Example (cont’d)

For the first split and its first iteration, we have
Cl = {x1, x2, x3, x4, x5, x6, x7} :

Compute Ddiana(x,Cl \ {x}) for all x ∈ Cl :

x ∈ Cl Ddiana(x,Cl \ {x})
x1 26
x2 22.5
x3 20.7
x4 17.3
x5 18.5
x6 22.17
x7 25.5

We find x∗ = x1 and thus Cl ← {x2, x3, x4, x5, x6, x7} and Cl ′ ← {x1}
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Example (cont’d)
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Example (cont’d)

For the first split and its second iteration, we have now
Cl = {x2, x3, x4, x5, x6, x7} :

Compute Ddiana(x,Cl \ {x})− Ddiana(x,Cl ′) for all x ∈ Cl :

x ∈ Cl Ddiana(x,Cl \ {x})− Ddiana(x,Cl ′)

x2 15
x3 16.4
x4 -15.2
x5 -12.6
x6 -19
x7 -19.8

We find x∗ = x3 and thus Cl ← {x2, x4, x5, x6, x7} and Cl ′ ← {x1, x3}
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Example (cont’d)
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Example (cont’d)

For the first split and its third iteration, we have now
Cl = {x2, x4, x5, x6, x7} :

Compute Ddiana(x,Cl \ {x})− Ddiana(x,Cl ′) for all x ∈ Cl :

x ∈ Cl Ddiana(x,Cl \ {x})− Ddiana(x,Cl ′)

x2 21
x4 -12.3
x5 -10.5
x6 -18.5
x7 -20.3

We find x∗ = x2 and thus Cl ← {x4, x5, x6, x7} and Cl ′ ← {x1, x3, x2}
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Example (cont’d)
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Example (cont’d)
For the first split and its fourth iteration, we have now
Cl = {x4, x5, x6, x7} :

Compute Ddiana(x,Cl \ {x})− Ddiana(x,Cl ′) for all x ∈ Cl :

x ∈ Cl Ddiana(x,Cl \ {x})− Ddiana(x,Cl ′)

x4 -14.3
x5 -13.6
x6 -24.3
x7 -25

We find x∗ = x5 BUT the optimal value is negative so we stop
moving points

5 dend(h) =

{
{x1, x2, x3, x4, x5, x6, x7} if 42 ≤ h
{{x4, x5, x6, x7}, {x1, x3, x2}} if 17 ≤ h < 42

where 17 is the diameter of the next cluster to be split.

Exercise 10 : Finish the Diana algorithm applied to this example.
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Example (cont’d)
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Example (cont’d)
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Example with R

> D=matrix(c(0,10,7,30,29,38,42,0,0,7,23,25,34,36,0,0,0,21,22...

> D=D+t(D)

> install.packages("cluster")

> library(cluster)

> hc_diana=diana(D,diss=T)

Exercise 11 : Use R and compute the DHC of the example used for AHC
methods with the Diana algorithm.
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Example using R (cont’d)

> pltree(hc_diana)
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Dendrogram of  diana(x = D, diss = T)

diana (*, "NA")
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H
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t
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Organization

Outline of today’s lesson :

1 Hard partitional clustering
k-means
Some extensions of the k-means algorithm

2 Soft partitional clustering
Fuzzy k-means and fuzzy k-modes
Density mixtures and EM algorithm

3 Some (external) validity indices for assessing clustering outputs
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Recalling the clustering process

DATABASE
(numerical 
data, texts, 

images, 
networks, …)

FEATURE
MATRIX

NUMERICAL
REPRESENTA

TION

PROXIMITY
MATRIX

CLUSTERING
OUTPUT

CLUSTERING
ASSESSMENT

CLUSTERING
ALGORITHM
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Different types of clustering algorithm

CLUSTERING
ALGORITHM

HARD
CLUSTERING

SOFT
CLUSTERING

HIERARCHI-
-CAL

PARTITIO-
NAL
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Partitional clustering

x1

x2

x4

x5

x3

x6

We seek for a flat partition C such
that objects belonging to a cluster
are similar and objects belonging to
different clusters are dissimilar.

Recall that a partition is the same as
clustering or as an equivalence
relation.
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Hard vs Soft partitional clustering

We can make the distinction between hard (or crisp) and soft (or fuzzy)
partitional clustering.

x1

x2

x4

x5

x3

x6

C = {{x1, x2, x3}︸ ︷︷ ︸
C1

, {x3, x4}︸ ︷︷ ︸
C2

, {x6}︸︷︷︸
C3

}

Hard clustering : an object belongs
to only one cluster.

U =




C1 C2 C3

x1 1 0 0
x2 1 0 0
x3 1 0 0
x4 0 1 0
x5 0 1 0
x6 0 0 1




where U is the assignment matrix
of size (n × |C |)
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Hard vs Soft partitional clustering (cont’d)
In hard clustering, the assignment matrix U is such that :

∀i = 1, . . . , n;∀l = 1, . . . , |C | : uil ∈ {0, 1}
∀i = 1, . . . , n :

∑|C |
l=1 uil = 1

In soft clustering, an object can belong to several clusters and in that
case, it has a non null membership value with all clusters it belongs to :

∀i = 1, . . . , n;∀l = 1, . . . , |C | : uil ∈ [0, 1]

∀i = 1, . . . , n :
∑|C |

l=1 uil = 1

uil indicates the strength of the membership of xi to Cl . Illustration :

U =




C1 C2 C3

x1 0.9 0.05 0.05
x2 0.7 0.2 0.1
x3 0.6 0.25 0.15
x4 0.2 0.7 0.1
x5 0.25 0.5 0.25
x6 0.25 0.3 0.45



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Hard partitional clustering k-means

Outline

1 Hard partitional clustering
k-means
Some extensions of the k-means algorithm

2 Soft partitional clustering
Fuzzy k-means and fuzzy k-modes
Density mixtures and EM algorithm

3 Some (external) validity indices for assessing clustering outputs
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Hard partitional clustering k-means

k-means

First proposed by Forgy in 1965 and MacQueen in 1967

The conventional k-means algorithm is the one described by Hartigan
in 1975

The k stands for the number of clusters which has to be fixed as a
parameter

The conventional k-means algorithm is applied to a continuous data
table X and attempts to minimize the SSE (Sum of Square) error
function :

SSE (C ) =

|C |∑

l=1

∑

x∈Cl

‖x− µ(Cl)‖2

︸ ︷︷ ︸
D2

eucl (x,µ(Cl ))

where µ(Cl) = 1
|Cl |
∑

x∈Cl
x is the mean vector of cluster Cl
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Hard partitional clustering k-means

k-means (cont’d)
Recall that the partitioning problem is an NP-Hard problem

The k-means algorithm is an hill-climbing optimization heuristics
which finds a local minimum of SSE

1 Input : X and k
2 Initialize C with k different clusters
3 While a stopping criterion is not reached do
4 For all x ∈ D do
5 For all Cl ∈ C do
6 Compute D2

eucl(x, µ(Cl))
7 End For
8 Find Cl∗ = argminCl∈CD2

eucl(x, µ(Cl))
9 Move x from its current cluster to Cl∗

10 Update the mean vectors accordingly
11 End For
12 End While
13 Ouput : C
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Hard partitional clustering k-means

k-means (cont’d)

The conventional k-means algorithm can be divided into 2 phases :

1 The initialization phase : the algorithm randomly assigned objects of
D to k clusters

2 The iteration phase : the algorithm computes the distances between
each object and each cluster and assigns the object to the nearest
cluster according to the euclidean distance

The algorithm stops when :

A maximal number of iterations is reached

The SSE value does not change significantly

The clusters do not change any longer
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Hard partitional clustering k-means

Another view of k-means

We can also introduce the partitioning problem related to the k-means
algorithm as follows :

SSE (U,Q) =
∑

ql∈Q

∑

xi∈D

uilD
2
eucl(xi,ql)

where Q = {q1, . . . ,qk} is the set of cluster prototypes which are points of
the input space (Rp), Q is the (k × p) matrix whose rows are the cluster
prototypes coordinates and U is an assignment matrix such that :

(1) ∀i = 1, . . . , n;∀l = 1, . . . , k : uil ∈ {0, 1}
(2) ∀i = 1, . . . , n :

∑k
l=1 uil = 1

uil = 1 if xi is assigned to cluster Cl which is represented by ql

We have to minimize SSE (U,Q) with respect to U and Q under the
constraints (1) and (2).
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Hard partitional clustering k-means

Another view of k-means (cont’d)

One can solve the optimization problem approximatively by iteratively
considering the two following subproblems (alternating minimization
approach) :

1 : Fix Q = Q̂ and solve the reduced problem SSE (U, Q̂)

2 : Fix U = Û and solve the reduced problem SSE (Û,Q)

We can solve these two subproblems efficiently (see theorems in next slide).

Since the sequence of SSE is strictly decreasing the previous algorithm will
converge to a local minimum after a finite number of iterations.
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We can solve these two subproblems efficiently (see theorems in next slide).

Since the sequence of SSE is strictly decreasing the previous algorithm will
converge to a local minimum after a finite number of iterations.

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 3 2015-2016 / 13



Hard partitional clustering k-means

Another view of k-means (cont’d)

One can solve the optimization problem approximatively by iteratively
considering the two following subproblems (alternating minimization
approach) :

1 : Fix Q = Q̂ and solve the reduced problem SSE (U, Q̂)
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Hard partitional clustering k-means

Another view of k-means (cont’d)

Theorem.

In the subproblem 1, if Q̂ is fixed then SSE (U, Q̂) is minimized iff :

∀i : 1, . . . , n : uil =

{
1 if D2

eucl(xi, q̂l) = minq̂l′∈Q̂{D2
eucl(xi, q̂l′)}

0 otherwise

Theorem.

In the subproblem 2, if Û is fixed then SSE (Û,Q) is minimized iff :

∀l : 1, . . . , k : q̂l =
1∑n

i=1 ûil

n∑

i=1

ûilxi

Both approaches minimize SSE approximatively. The difference is that the
conventional k-means algorithm updates both U and Q progressively and
after each data point reallocation.
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Hard partitional clustering k-means

Example

Data table :

X =




x1 1 1
x2 1.5 2
x3 3 4
x4 5 7
x5 3.5 5
x6 4.5 5
x7 3.5 4.5




Initialization of Q :

(
q1 1 1
q2 5 7

) ●

●

●

●

● ●

●

1 2 3 4 5

1
2

3
4

5
6

7

● Points

q1

q2
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Hard partitional clustering k-means

Example (cont’d)
5-7 D2

eucl(x1,q1) = 0
D2
eucl(x1,q2) = 52

8-10 C1 = {x1}
q1 = x1

= (1, 1)

5-7 D2
eucl(x2,q1) = 1.25

D2
eucl(x2,q2) = 37.25

8-10 C1 = {x1, x2}
q1 = x1+x2

2
= (1.25, 1.5)

5-7 D2
eucl(x3,q1) = 9.31

D2
eucl(x3,q2) = 13

8-10 C1 = {x1, x2, x3}
q1 = x1+x2+x3

3
= (1.83, 2.33)

●

●

●

●

● ●

●

1 2 3 4 5

1
2

3
4

5
6

7

● Points

q1

q2
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Hard partitional clustering k-means

Example (cont’d)
5-7 D2

eucl(x4,q1) = 31.80
D2
eucl(x4,q2) = 0

8-10 C2 = {x4}
q2 = x4

= (5, 7)

5-7 D2
eucl(x5,q1) = 9.89

D2
eucl(x5,q2) = 6.25

8-10 C2 = {x4, x5}
q2 = x4+x5

2
= (4.25, 6)

5-7 D2
eucl(x6,q1) = 14.22

D2
eucl(x6,q2) = 1.06

8-10 C2 = {x4, x5, x6}
q2 = x4+x5+x6

3
= (4.33, 5.67)

●

●

●

●

● ●

●

1 2 3 4 5

1
2

3
4

5
6

7

● Points

q1

q2
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Hard partitional clustering k-means
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Hard partitional clustering k-means

Example (cont’d)

5-7 D2
eucl(x7,q1) = 7.47

D2
eucl(x7,q2) = 2.05

8-10 C2 = {x4, x5, x6, x7}
q2 =

∑7
i=4 xi

4
= (4.12, 5.37)

At the end of the first scan,
we have the two clusters :
{{x1, x2, x3}, {x4, x5, x6, x7}}.
We start over from line 3 in
the k-means algorithm . . .

●

●

●

●

● ●

●

1 2 3 4 5

1
2
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4

5
6

7

● Points

q1

q2

Exercise 12 : Continue the k-means algorithm on this example for one
more iteration.

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 3 2015-2016 / 18



Hard partitional clustering k-means

Example (cont’d)

5-7 D2
eucl(x7,q1) = 7.47

D2
eucl(x7,q2) = 2.05

8-10 C2 = {x4, x5, x6, x7}
q2 =

∑7
i=4 xi

4
= (4.12, 5.37)

At the end of the first scan,
we have the two clusters :
{{x1, x2, x3}, {x4, x5, x6, x7}}.

We start over from line 3 in
the k-means algorithm . . .

●

●

●

●

● ●

●

1 2 3 4 5

1
2

3
4

5
6

7

● Points

q1

q2

Exercise 12 : Continue the k-means algorithm on this example for one
more iteration.
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Hard partitional clustering k-means

Pros and cons of the k-means algorithm

Pros :

One of the most used clustering algorithm since its a quite strong
baseline. See for eg [Bock, 2007, Steinley, 2006] as general references
for this method

It is efficient in clustering large data sets, since its computational
complexity is linearly proportional to the size of the data sets O(n)
(providing that k << n and p << n), see for eg [Hamerly, 2010]

It often terminates at a local optimum
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Hard partitional clustering k-means

Pros and cons of the k-means algorithm (cont’d)

Cons :

The performance is dependent on the initialization of the centers.
There have been many papers studying and proposing initialization
techniques for the k-means algorithm, see for eg
[Khan, 2004, Bradley and Fayyad, 1998]

The found clusters have convex shapes, such as a ball in
three-dimensional space. Thus more complex shapes (like for
high-dimensional data) are not well treated by the k-means approach.
But new approaches have been developed to deal with this aspect like
using kernels for eg [Dhillon et al., 2004]
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Hard partitional clustering k-means

Pros and cons of the k-means algorithm (cont’d)

Cons :

The number of clusters k needs to be fixed beforehand which is a
drawback when one has no clue on an adequate value 1. There have
also been many proposals in that context see for eg
[Pelleg and Moore, 2000, Milligan and Cooper, 1985]

It deals with numerical data and this restricts the use of the k-means
algorithm but some related techniques have been proposed (see
k-modes in the sequel)

1. Note that we have the same issue with HC but after the clustering process.
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Hard partitional clustering k-means

Example using R

> X=matrix(c(1,1.5,3,5,3.5,4.5,3.5,1,2,4,7,5,5,4.5),nrow=7)

> kmeans_eucl=kmeans(X,centers=2)

> print(kmeans_eucl)

K-means clustering with 2 clusters of sizes 2, 5

Cluster means:

[,1] [,2]

1 1.25 1.5

2 3.90 5.1

Clustering vector:

[1] 1 1 2 2 2 2 2

Within cluster sum of squares by cluster:

[1] 0.625 7.900

Available components:

[1] "cluster" "centers" "withinss" "size"
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Hard partitional clustering k-means

Example using R (cont’d)

> plot(rbind(X,kmeans_eucl$centers),pch=as.integer(c(1,1,1,1,1,1,1,2,3)),cex=3,cex.lab=1.25,cex.axis=1.5,xlab="",ylab="")

> legend(1, 7, c("Points","q1","q2"), pch=1:3,cex=1.5)
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Hard partitional clustering Some extensions of the k-means algorithm

Outline

1 Hard partitional clustering
k-means
Some extensions of the k-means algorithm

2 Soft partitional clustering
Fuzzy k-means and fuzzy k-modes
Density mixtures and EM algorithm

3 Some (external) validity indices for assessing clustering outputs
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Hard partitional clustering Some extensions of the k-means algorithm

The generalized k-means approach
Generalized approach of k-means (see [Bock, 2007]) : any kinds of error
function, distance measure, and representative points or cluster prototype.

E (U,Q) =
∑

ql∈Q

∑

xi∈D

uilD(xi,ql)

where U is an assignment matrix, ql is a prototype vector 2 representing
the cluster Cl and D is a dissimilarity measure.

More flexibility :

No constraint on the type of underlying data

Many ways to specify a family Q of appropriate cluster prototypes to
represent specific aspects of the clusters

However, not all models are computationally attractive : SSE has
particular properties that makes the conventional k-means algorithm
fast (see previous theorems)

2. Some methods even propose several prototypes vectors to represent a single cluster.
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Hard partitional clustering Some extensions of the k-means algorithm

The generalized k-means approach (cont’d)

A general approach to approximatively solve any generalized k-means
model : the alternating minimization algorithm.

To solve minU∈U,Q∈Q E (U,Q) :

0 (t = 0) Start with an arbitrary prototype system Q0 = (q0
1, . . . ,q

0
k)

1 Fix Q = Qt and minimize E (U,Qt) with respect to U and find Ut

2 Fix U = Ut and minimize E (Ut,Q) with respect to Q and find Qt+1

3 Repeat 1-2 until a stopping criterion is reached
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Hard partitional clustering Some extensions of the k-means algorithm

k-modes

Proposed by Huang in 1997 [Huang, 1998]

Extension of the k-means algorithm to deal with categorical data

k-modes algorithm is applied to a discrete data table X and attempts
to minimize the error function :

E (U,Q) =
∑

ql∈Q

∑

xi∈D

uilDsm(xi,ql)

where :
I U is the regular assignment matrix
I Dsm(xi,ql) is the simple matching distance
I ql is the prototype of cluster Cl defined as the mode vector of a set of

points
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Hard partitional clustering Some extensions of the k-means algorithm

k-modes (cont’d)

Let x and y be two data points described in a discrete input space V
made of p categorical variables V = {v1, . . . , vp}

Each vj has pj categories and domain dom(vj) = {v 1
j , . . . , v

r
j , . . . , v

pj
j }

The general term of X denoted xij ∈ dom(vj) is the category assigned
to data point xi according to vj

For the categorical feature vj, let define : δ(xj , yj) =

{
0 if xj = yj
1 otherwise

The simple matching distance between x and y is defined as :

Dsm(x, y) =

p∑

j=1

δ(xj , yj)

Let Cl be a set of data points then the mode vector ql representing Cl

is defined as :
ql = argminq∈V

∑

x∈Cl

Dsm(q, x)
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Hard partitional clustering Some extensions of the k-means algorithm

k-modes (cont’d)
Is there any efficient way to determine ql given Cl ?

Let nr
jl be the number of objects in Cl having the category v r

j of vj

Let
nrjl
|Cl | be the frequency of category v r

j of vj in Cl

Theorem.

Given a set of objects Cl , the quantity
∑

x∈Cl
Dsm(q, x) is minimized iff,

∀j = 1, . . . , p :

∀r 6= qj :
n
qj
jl

|Cl |
≥

nr
jl

|Cl |
where qj ∈ dom(vj) is the category assigned to q wrt vj

Given this result, the k-modes algorithm can be similar to the conventional
k-means algorithm except that we use the simple matching distance and
we apply the previous rule to update the cluster prototypes. Thus the time
complexity of k-modes is the same as k-means.
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Hard partitional clustering Some extensions of the k-means algorithm

Example using R

> library(FactoMineR)

> data(poison.text)

> poison.temp=poison.text[,-3]

> install.packages("klaR")

> library("klaR")

> kmodes_res=kmodes(data=poison.temp,modes=2,weighted=F)

> print(kmodes_res)

K-modes clustering with 2 clusters of sizes 28, 27

Cluster modes:

Sick Sex

1 sick F

2 sick M

Clustering vector:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 1 1 1 2 2 1 1 2 2 1 1 1 1 2 1 2 2 1 1 2 1 1 2 1 2

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52

1 2 1 1 1 2 1 2 1 2 2 1 2 2 2 2 1 1 2 2 2 2 1 1 2 2

53 54 55

1 2 2

Within cluster simple-matching distance by cluster:

[1] 9 8

Available components:

[1] "cluster" "size" "modes" "withindiff" "iterations"

[6] "weighted"
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k-medöıds or k-medians or Partitioning Around Medöıds

First proposed by Vinod in 1964 then developed by Kaufman and
Rousseeuw in 1987 see [Kaufman and Rousseeuw, 2005]

Extension of the k-means algorithm that better deals with outliers

E (U,Q) =
∑

ql∈Q

∑

xi∈D

uil

p∑

j=1

|xij − qlj |
︸ ︷︷ ︸
Dmanh(xi,ql)

where :
I U is the regular assignment matrix
I
∑p

j=1 |xij − qlj | is the Manhattan distance between xi and ql
I ql is the prototype of cluster Cl and it should be an item of D
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k-medöıds or k-medians or Partitioning Around Medöıds

First proposed by Vinod in 1964 then developed by Kaufman and
Rousseeuw in 1987 see [Kaufman and Rousseeuw, 2005]

Extension of the k-means algorithm that better deals with outliers

E (U,Q) =
∑

ql∈Q
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|xij − qlj |
︸ ︷︷ ︸
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k-medöıds or k-medians or PAM (cont’d)

Since clusters should be represented by data points in D, one can solve the
k-medöıds problem exactly by using integer linear programming :

minU E (U) =
∑

xi,xj∈D uijDmanh(xi, xj)

subject to :



∀i , j : uij ∈ {0, 1}
∀i :

∑n
j=1 uij = 1

∀i , j : uij ≤ ujj∑n
j=1 ujj = k

However, this is an NP-hard problem and in practice we use the following
heuristic.
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k-medöıds or k-medians or PAM (cont’d)

Since clusters should be represented by data points in D, one can solve the
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k-medöıds or k-medians or PAM (cont’d)
1 Input : X and k
2 Initialize Q and C with k different data points in D

3 While a stopping criterion is not reached do
4 For all x ∈ D do
5 Find Cl∗ = argminCl∈CDmanh(x,ql)
6 Move x to Cl∗

7 End For
8 Compute E (U,Q)
9 Randomly select an object qrand in D \Q
10 For all ql ∈ Q do
11 Qrand ← Q \ ql ∪ qrand

12 Compute S(ql,qrand) = E (U,Q)− E (U,Qrand)
13 End For
14 Select ql∗ = argmaxql∈Q{S(ql,qrand)}
15 If S(ql∗ ,qrand) > 0 do Q← Q \ ql∗ ∪ qrand End If
16 End While
17 Ouput : C
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Example using R

> library(cluster)

> X=matrix(c(1,1.5,3,5,3.5,4.5,3.5,1,2,4,7,5,5,4.5),nrow=7)

> kmedoids_res=pam(X,k=2,metric=’manhattan’)

> print(kmedoids_res)

Medoids:

ID

[1,] 2 1.5 2

[2,] 5 3.5 5

Clustering vector:

[1] 1 1 2 2 2 2 2

Objective function:

build swap

1.214286 1.142857

Available components:

[1] "medoids" "id.med" "clustering" "objective" "isolation"

[6] "clusinfo" "silinfo" "diss" "call" "data"
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Example using R (cont’d)

> plot(rbind(X,kmedoids_res$medoids),pch=as.integer(c(1,1,1,1,1,1,1,2,3)),cex=3,cex.lab=1.25,cex.axis=1.5,xlab="",ylab="")

> legend(1, 7, c("Points","q1=x2","q2=x5"), pch=1:3,cex=1.5)
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Complexity and extensions of k-medöıds
k-medöıds is claimed to be more robust than k-means however, the
time complexity is worst since it is O(k(n − k)2) (quadratic in n)

Some techniques that embed PAM have been proposed in order to
address large datasets :

I CLARA (Clustering LARge Applications)
[Kaufman and Rousseeuw, 2005] : instead of taking the whole dataset
into consideration, a small portion of the latter is chosen as a
representative of the data. Medöıds are then chosen from this sample
using PAM. Multiple samples are drawn from the dataset and CLARA
keeps the best set of medöıds (wrt E ).

I CLARANS (Clustering Large Applications based upon RANdomized)
[Ng and Han, 1994] : while CLARA has a fixed sample at each stage of
the search, CLARANS draws a sample with some randomness in each
step of the search. The approach is like searching in a graph where
nodes are set of k-medöıds and two nodes are neighbors if they differ
by only one medöıd (a data point that is selected randomly in D).
PAM is then used to go from one node to another : from one node we
move to the neighbor that leads to the best decrease in terms of E .
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k-medöıds is claimed to be more robust than k-means however, the
time complexity is worst since it is O(k(n − k)2) (quadratic in n)
Some techniques that embed PAM have been proposed in order to
address large datasets :

I CLARA (Clustering LARge Applications)
[Kaufman and Rousseeuw, 2005] : instead of taking the whole dataset
into consideration, a small portion of the latter is chosen as a
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Hard partitional clustering Some extensions of the k-means algorithm

Bisecting k-means

Described in [Steinbach et al., 2000]

k-means is iteratively applied to clusters in order to split them into
two

It is a kind of divisive hierarchical clustering technique (DHC)

1 Input : X and k
2 Initialize C = D
3 While |C | < k do
4 Pick a cluster of C according to a criterion
4 Split the selected cluster using the conventional k-means
5 End While
6 Ouput : C

Exercise 13 : What is the time complexity of the bisecting k-means ?
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Bisecting k-means

Different criteria might be used to select which cluster to split :

Pick the largest cluster

Pick the cluster with the largest SSE defined as :

SSE (Cl) =
∑

x∈Cl

‖x− µ(Cl)‖2

A criterion that mixes both the size and the SSE . . .

However, it is reported in [Steinbach et al., 2000] that the results do not
significantly change from one strategy to another (experiments were
conducted on documents clustering).

Exercise 14 : Using the kmeans function, write an R function that
implements the bisecting k-means.
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Soft partitional clustering Fuzzy k-means and fuzzy k-modes
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Density mixtures and EM algorithm

3 Some (external) validity indices for assessing clustering outputs
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Soft partitional clustering Fuzzy k-means and fuzzy k-modes

Fuzzy k-means (also know as fuzzy c-means)

Proposed by Bezdek in 1973 [Bezdek, 1973]

Extension of the k-means algorithm that allows data points to belong
to several clusters

The objective function is the following one :

E (U,Q) =
∑

ql∈Q

∑

xi∈D

uαil D2
eucl(xi,ql)

where Q is again the set of cluster representative points belonging to
the input space but here U is a fuzzy assignment matrix with α > 1
such that :
(1) ∀i = 1, . . . , n;∀l = 1, . . . , k : uil ∈ [0, 1]

(2) ∀i = 1, . . . , n :
∑k

l=1 uil = 1
(3) ∀l = 1, . . . , k :

∑n
i=1 uil > 0

I uil is the membership value of object xi to cluster Cl

I α is called the fuzzifier and affects the final membership distribution.
Typically α = 2 (setting α = 1 leads to the crisp solution)
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Fuzzy k-means (cont’d)

Theorem.

For α > 1, Bezdek gave the two following necessary conditions for a
minimum (U∗,Q∗) of E (U,Q).

1 Regarding Q∗ :

∀l = 1, . . . , k : q∗l =

∑
xi∈Cl

(u∗il)
αxi∑

xi∈Cl
(u∗il)

α
(1)

2 Regarding U∗ :
I If ∀l = 1, . . . , k : D2

eucl(xi,q∗l ) > 0 then we have :

∀l : u∗il =

(
D2

eucl(xi,q∗l )
) −1

α−1

∑
q∗

l ∈Q∗ (D2
eucl(xi,q∗l ))

−1
α−1

(2)

I If ∃l : D2
eucl(xi,q∗l ) = 0 then u∗il are any non negative numbers such

that :
∑k

l=1 u∗il = 1 and u∗il = 0 if D2
eucl(xi,q∗l ) > 0.
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Fuzzy k-means (cont’d)
1 Input : X, k , α
2 Initialize k different clusters

3 While a stopping criterion is not reached do
4 For all l = 1, . . . , k do
5 Compute ql using Eq. (1)
6 End For
7 For all xi ∈ D do
8 For all l = 1, . . . , k do
9 Compute uil using Eq. (2)
10 End For
11 End For
12 End While
13 Ouput : U and Q

The stopping criterion is generally based on the maximum change
regarding U obtained after two consecutive iterations : if
max{|ut−1

il − ut
il |} < ε then we stop.
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1 Input : X, k , α
2 Initialize k different clusters
3 While a stopping criterion is not reached do
4 For all l = 1, . . . , k do
5 Compute ql using Eq. (1)
6 End For

7 For all xi ∈ D do
8 For all l = 1, . . . , k do
9 Compute uil using Eq. (2)
10 End For
11 End For
12 End While
13 Ouput : U and Q

The stopping criterion is generally based on the maximum change
regarding U obtained after two consecutive iterations : if
max{|ut−1

il − ut
il |} < ε then we stop.

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 3 2015-2016 / 42

Soft partitional clustering Fuzzy k-means and fuzzy k-modes

Fuzzy k-means (cont’d)
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Fuzzy k-means (cont’d)
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Example using R

> library(e1071)

> X=matrix(c(1,1.5,3,5,3.5,4.5,3.5,1,2,4,7,5,5,4.5),nrow=7)

> fuzz_kmeans_res=cmeans(x=X,centers=2,dist=’euclidean’,m=2)

> print(fuzz_kmeans_res)

Fuzzy c-means clustering with 2 clusters

Cluster centers:

[,1] [,2]

1 3.931070 5.119722

2 1.304819 1.579120

Memberships:

1 2

[1,] 0.01647822 0.98352178

[2,] 0.01357266 0.98642734

[3,] 0.80463607 0.19536393

[4,] 0.90196526 0.09803474

[5,] 0.98803001 0.01196999

[6,] 0.98480808 0.01519192

[7,] 0.95906127 0.04093873

Closest hard clustering:

[1] 2 2 1 1 1 1 1

Available components:

[1] "centers" "size" "cluster" "membership" "iter"

[6] "withinerror" "call"

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 3 2015-2016 / 43

Soft partitional clustering Fuzzy k-means and fuzzy k-modes

Example using R (cont’d)

> plot(rbind(X,fuzz_kmeans_res$centers),pch=as.integer(c(1,1,1,1,1,1,1,2,3)),cex=3,cex.lab=1.25,cex.axis=1.5,xlab="",ylab="")

> legend(1, 7, c("Points","q1=x2","q2=x5"), pch=1:3,cex=1.5)
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Fuzzy k-modes

Proposed by Huang and Ng in 1999 [Huang and Ng, 1999]

Extension of the fuzzy k-means algorithm to deal with categorical
data

The objective function is as follows :

E (U,Q) =
∑

ql∈Q

∑

xi∈D

uαil Dsm(xi,ql)

where :
I U is the fuzzy assignment matrix
I Dsm(xi,ql) is the simple matching distance
I ql is the prototype of cluster Cl

I α > 1 is the fuzzifier (α = 1 leads to the crips k-modes)
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Fuzzy k-modes (cont’d)

We use an alternating minimization algorithm. The following results allow
one to easily find the minimization of the consecutive subproblems.

Theorem.

If Û is fixed, then E (Û,Q) is minimized iff, ∀l = 1, . . . , k ;∀j = 1, . . . , p :

∀r 6= qlj :
∑

xi:xij=qlj

uαil ≥
∑

xi:xij=r

uαil

where qlj ∈ dom(vj) is the category assigned to ql wrt vj
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Fuzzy k-modes (cont’d)

Theorem.

If Q̂ is fixed, then E (U, Q̂) is minimized iff, ∀i = 1, . . . , n; ∀l = 1, . . . , k :

uαil =





1 if xi = ql

0 if xi = qh with h 6= l

(Dsm(xi,ql))
−1
α−1

∑
ql∈Q̂(Dsm(xi,ql))

−1
α−1

otherwise

Based on these two theorems the fuzzy k-modes algorithm can be
implemented as follows.
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Fuzzy k-modes (cont’d)

1 Input : X, k , α
2 Initialize Q0 with k different prototypes in V
3 Determine U0 minimizing E (U,Q0) using the 2nd theorem

4 While a stopping criterion is not reached do
5 Determine Q1 minimizing E (U0,Q) using the 1st theorem
6 If E (U0,Q0) = E (U0,Q1) do break
7 Else do Determine U1 minimizing E (U,Q1) using the 2nd theorem
8 If E (U0,Q1) = E (U1,Q1) do break
9 Else do U0 ← U1

10 End If
11 End If
12 End While
13 Ouput : current U and Q

The stopping criterion is usually a maximum number of iterations.
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Fuzzy k-modes in R ?

Exercise 15 : Is there any freely available R code for the fuzzy k-modes
algorithm ?
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Soft partitional clustering Density mixtures and EM algorithm

Outline

1 Hard partitional clustering
k-means
Some extensions of the k-means algorithm

2 Soft partitional clustering
Fuzzy k-means and fuzzy k-modes
Density mixtures and EM algorithm

3 Some (external) validity indices for assessing clustering outputs
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Soft partitional clustering Density mixtures and EM algorithm

Model based clustering or density mixture models

Clustering algorithms based upon probability models

Data are viewed as coming from a finite mixture of probability
distributions

Each distribution represents a cluster

The clustering problem becomes that of estimating the parameters of
the assumed mixture

Once the parameters of the model are estimated, we can compute the
posterior probabilities of cluster membership of the objects

A general reference on finite mixture models :
[Mclachlan and Peel, 2000]
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Soft partitional clustering Density mixtures and EM algorithm

Model based clustering or density mixture models (cont’d)

Finite mixture models are a family of probability density functions of
the form :

f (x|p, θ) =
k∑

l=1

plgl(x|θl)

where :
I x is a p-dimensional random variable
I p = (p1, . . . , pk) is the vector of mixing proportions such that∑k

l=1 pl = 1
I gl ; l = 1, . . . , k are the different component densities of the mixture
I Each gl is parametrized by a vector of parameters θl

Note that all gl can be of the same density family but they differ from
their parameters.
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Model based clustering or density mixture models (cont’d)
If we have the estimation of all the parameters of the models (ie p̂
and the θ̂l) then we can deduce :

Pr(Cl |xi) =
p̂lgl(xi|θ̂l)

f (xi|p̂, θ̂)

Pr(Cl |xi) is the posterior probability of having Cl given xi. In other
words, it represents the “membership” value of xi to cluster Cl .

Suppose now that we are given D = {x1, . . . , xn}. From the mixture
density given previously, we have the following log-likelihood function l :

l(p, θ) =
∑

xi∈D

lnf (xi|p, θ)

Estimates of the parameters would usually be obtained as a solution of the
likelihood equations : ∂l(φ)

∂φ = 0 with φ = (p, θ). But the likelihood function
is too complicated to employ the usual methods for its maximization.
To estimate the parameters, the most widely used approach is the iterative
expectation maximization (EM) algorithm [Dempster et al., 1977].
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Gaussians mixtures and EM algorithm

Gaussians mixture is one of the most used mixture model :

f (x|p, µ,Σ) =
k∑

l=1

pl Φ(x|µl ,Σl)︸ ︷︷ ︸
gl (x|θl)

in that case :
I ∀l : gl(x|θl) = Φ(x|µl,Σl︸ ︷︷ ︸

θl

) =
exp[− 1

2 (x−µl)
tΣl

−1(x−µl)]√
(2π)p|Σl|

I ∀l : µl is the mean vector related to Cl

I ∀l : Σl is the covariance matrix related to Cl
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Gaussians mixtures and EM algorithm (cont’d)
In the case of Gaussians mixtures, the EM algorithm iteratively updates
the following quantities :

Expectation step :

Pr(Cl |xi) =
p̂lΦ(xi|µ̂l , Σ̂l)∑k
l=1 plΦ(xi|µ̂l , Σ̂l)

(3)

Maximization step :

p̂l =
1

n

∑

xi∈D

Pr(Cl |xi) (4)

µ̂l =
1

np̂l

∑

xi∈D

xiPr(Cl |xi) (5)

Σ̂l =
1

n

∑

xi∈D

(xi − µl)(xi − µl)
tPr(Cl |xi) (6)
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Gaussians mixtures and EM algorithm (cont’d)
1 Input : X, k
2 Initialize the means µl, covariances Σl and mixing coefficients pl

3 While a stopping criterion is not reached do
4 For all i = 1, . . . , n do (E step)
8 For all l = 1, . . . , k do
5 Compute Pr(Cl |xi) using Eq. (3)
6 End For
6 End For
4 For all l = 1, . . . , k do (M step)
8 Compute p̂l using Eq. (4)
8 Compute µ̂l using Eq. (5)
8 Compute Σl using Eq. (6)
11 End For
12 End While
13 Ouput : U and Q

The stopping criterion is either the convergence of the parameters or the
log likelihood.
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1 Input : X, k
2 Initialize the means µl, covariances Σl and mixing coefficients pl

3 While a stopping criterion is not reached do
4 For all i = 1, . . . , n do (E step)
8 For all l = 1, . . . , k do
5 Compute Pr(Cl |xi) using Eq. (3)
6 End For
6 End For
4 For all l = 1, . . . , k do (M step)
8 Compute p̂l using Eq. (4)
8 Compute µ̂l using Eq. (5)
8 Compute Σl using Eq. (6)
11 End For
12 End While
13 Ouput : U and Q

The stopping criterion is either the convergence of the parameters or the
log likelihood.

J. Ah-Pine (Univ-Lyon 2) Data Clustering - Part 3 2015-2016 / 56

Soft partitional clustering Density mixtures and EM algorithm

Gaussians mixtures - EM algorithm and k-means
EM algorithm for Gaussians mixtures and k-means are related
The former can be viewed as a soft version of the latter
k-means is a particular limit of EM for Gaussians mixtures

If we assume that Σl = εI for all l = 1, . . . , k , we obtain :

Φ(x|µl,Σl) =
exp[− 1

2ε‖x− µl‖2]√
(2π)pε

Pr(Cl |xi) =
p̂l exp[− 1

2ε‖x− µl‖2]
∑k

l=1 p̂l exp[− 1
2ε‖x− µl‖2]

If ε→ 0 then :
I Pr(Cl |xi) converges to 0 except for Cl∗ = argmin‖x− µl∗‖2 (posterior

probabilities tend to an hard assignment matrix U)
I The expected log likelihood tends to (see [Bishop, 2006] for details) :

−1

2

n∑

i=1

k∑

l=1

Uil‖xi − µl‖2 + const
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Example using R
> library(mclust)

> X=matrix(c(1,1.5,3,5,3.5,4.5,3.5,1,2,4,7,5,5,4.5),nrow=7)

> gauss_em_res=Mclust(data=X,G=2)

> gauss_em_res$z

[,1] [,2]

[1,] 9.969483e-01 0.003051682

[2,] 9.848557e-01 0.015144322

[3,] 3.216620e-24 1.000000000

[4,] 3.218174e-107 1.000000000

[5,] 2.747011e-35 1.000000000

[6,] 1.793497e-134 1.000000000

[7,] 1.989165e-45 1.000000000

> gauss_em_res$parameters$mean

[,1] [,2]

[1,] 1.248495 3.891120

[2,] 1.496989 5.088318

> print(gauss_em_res)

best model: ellipsoidal, equal shape with 2 components

Comment : the Mclust function first applies an AHC in order to initialize
the parameters. Then it tests several models that differ regarding the
assumptions about Σ (eg all Σl are the same, ...). Those different
assumptions reflect the shape, volume and orientation of the multivariate
Gaussians. It then uses the BIC (Bayesian Information Criterion) to select
the best model (see [Fraley and Raftery, 2009] for details).
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Example using R (cont’d)
> plot(gauss_em_res,X,what="classification")

Tapez <Entrée> pour voir le graphique suivant :

1 2 3 4 5

1
2

3
4

5
6

7

Classification
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Some (external) validity indices for assessing clustering outputs

Recalling the clustering process

DATABASE
(numerical 
data, texts, 

images, 
networks, …)

FEATURE
MATRIX

NUMERICAL
REPRESENTA

TION

PROXIMITY
MATRIX

CLUSTERING
OUTPUT

CLUSTERING
ASSESSMENT

CLUSTERING
ALGORITHM
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Some (external) validity indices for assessing clustering outputs

Different types of assessment measures
How to assess clustering outputs ? We can have different approaches :

External criteria : we evaluate the results of a clustering algorithm
based on a pre-specifed structure (a ground-truth typically). The
closer the clustering output to the pre-specified structure according to
an assessment measure, the better the ouput.

Internal criteria : in this case, the clustering results are evaluated in
terms of quantities that involve the vectors of the dataset themselves
(the proximity matrix for eg)

We are going to present some classical external criteria. Note that in that
case we assume hard flat clustering. However from either HC or soft
clustering, we can extract an hard partition with k clusters. For more types
of validity indices see for eg [Gan et al., 2007].
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Some external measures

Before introducing the assessment measures we need to introduce some
notations :

Let C = {C1, . . . ,Cl , . . . ,Ck} be the clustering output

Let C ′ = {C ′1, . . . ,C ′l ′ , . . . ,C ′k ′} be the pre-specified partition

Let A =Nb of pairs where both objects belong to the same cluster
both for C and C ′

Let B =Nb of pairs where both objects belong to the same cluster for
C but not for C ′

Let C =Nb of pairs where both objects belong to the same cluster for
C ′ but not for C

Let D =Nb of pairs where both objects do not belong to the same
cluster neither for C ′ nor C

Let M = A + B + C + D

Note that M =
(n

2

)
= n(n−1)

2 .
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Some (external) validity indices for assessing clustering outputs

Example

Let C = {{x1, x2, x3}, {x4, x5}}
Let C ′ = {{x1, x2}, {x3, x4}, {x5}}

These equivalence relations can be represented by their adjacency
matrices :

C =




x1 x2 x3 x4 x5

x1 1 1 1 0 0
x2 1 1 1 0 0
x3 1 1 1 0 0
x4 0 0 0 1 1
x5 0 0 0 1 1




; C′ =




x1 x2 x3 x4 x5

x1 1 1 0 0 0
x2 1 1 0 0 0
x3 0 0 1 1 0
x4 0 0 1 1 0
x5 0 0 0 0 1




In this example we have A = 1 ;B = 3 ;C = 1 and D = 5.
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Some (external) validity indices for assessing clustering outputs

Comparing partitions

Many external evaluation measures in clustering are statistics used to
compare two partitions.

Rand : Rand(C ,C ′) = A+D
M

Jaccard : Jaccard(C ,C ′) = A
A+B+C

Folkes and Mallows : FM(C ,C ′) = A√
(A+B)(A+C)

Russel and Rao : RR(C ,C ′) = A
M

Phi : Phi(C ,C ′) = AD−BC
(A+B)(A+C)(D+B)(D+C)

Note that these measures are similar to similarity measures between binary
vectors.
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Some (external) validity indices for assessing clustering outputs

Example using R

> data("iris",package="datasets")

> library(clusterSim)

> iris.normalization=data.Normalization(iris[,-5],type="n1")

> iris_kmeans_res=kmeans(x=iris.normalization,centers=3)

> iris_labels=as.integer(iris[,5])

> install.packages("clv")

> library(clv)

> iris_kmeans_res_ext_eval=std.ext(iris_kmeans_res$cluster,iris_labels)

> clv.Rand(iris_kmeans_res_ext_eval)

[1] 0.8322148

> clv.Jaccard(iris_kmeans_res_ext_eval)

[1] 0.5938921

> clv.Folkes.Mallows(iris_kmeans_res_ext_eval)

[1] 0.7452105

> clv.Russel.Rao(iris_kmeans_res_ext_eval)

[1] 0.2453691
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Assignment using R

Exercise 16 : Take a small datasets (no more than a few undreds of
objects) designed for classification tasks from UCI ML
http://archive.ics.uci.edu/ml/.
With R, apply several clustering techniques (at least one HC, one hard
partitioning and one fuzzy clustering) and compare the clustering outputs
using some external validity indices (via the comparisons of the different
outputs to the ground-truth). The code should be commented with some
concise explanations regarding the used libraries, the applied clustering
techniques corresponding to the employed functions and the specified
parameters of the latter.

In order to help you do this exercise, you can also consult the following
webpage :
http://cran.at.r-project.org/web/views/Cluster.html.
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